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EXECUTIVE SUMMARY

The helicopter-rotor wake is among the most complex flow-fields in aero-
dynamics. This is due to the fact that the wake is fully three-dimensional
and unsteady; moreover, many experiments have focused on trimmed condi-
tions which involve cyclic pitch that complicates the wake and makes both
experiments and computations difficult. As is well known, it is difficult and
expensive to calculate accurately the wake position beyond one revolution of
the rotor. The primary focus of this work is to study the formation of the
rotor wake in both hover and forward flight.

The major objective of the analytical and computational work is to inves-
tigate whether classical invisid lifting line and lifting surface methods applied
locally near the wing tip can describe the origin of the tip-vortex. If so, this
will result in the ability to predict circulation, asymptotic core radius, initial
tip-vortex position, and local blade loads accurately. It may seem odd to
describe the formation of the tip-vortex in this manner when viscous flow
methods have been used. To further address the problem, a comprehensive
set of experiments have been conducted.

The primary results and major accomplishments of this work are

e A lifting surface code for a semi-infinite three-dimensional fixed and
rotary wing has been developed for use as the inner solution at the
wing tip and the formation of the vortex has been described by rollover
of vortex filaments near the wing tip.

e An analytical lifting-line analysis for the semi-infinite fixed wing has
been compared with the full lifting surface code and the results are
very good.

e The analytical lifting surface code results for the development of the
tip vortex shed by both fixed and rotary wings have been compared
with experiment and the results are encouraging.

e The calculations show that the circulation of the tip-vortex is about
80 — 90% of the maximum bound circulation in hover and the tip-
vortex is formed within one revolution. The experiments suggest that
the circulation is ~ 40% of the maximum bound circulation in low-
s[peed forward flight. The reason for the large discrepancy is unknown.




Experimental data obtained in the last few decades by researchers all
over the world has been correlated.

An internet database has been setup where results from several fixed-,
rotary- and oscillating- wing tests have been tabulated.

Circulation measurements from this database have been correlated with
an expression developed for trailed circulation in the vortex in terms
of geometric angle of attack and aspect ratio.

Laser velocimetry has been performed near the blade tip on the ad-
vancing side of a 2-bladed rotor in forward flight in the Harper Wind
Tunnel. Vortex trajectories over the blade tip, as well as velocity fields
in the vortex formation region have been obtained from these measure-
ments.

The experiments have shown that the vortex increases in strength and
size during the formation process. This, coupled with secondary fea-
tures observed in the velocity profiles, suggests that the formation pro-
cess may be due to the rollup of discrete vortex filaments. This is
precisely what is seen in the computations.

Laser velocimetry was also used to obtain velocity data in the very
near wake of the rotor blade in a fixed wing configuration. These are
intended to serve as direct comparisons to the rotary wing data under
the same free-stream turbulence levels.

Axial velocity values within the vortex can reach 96% of the tip speed.




Chapter 1

Introduction

1.1 Background

The helicopter-rotor wake is among the most complex flow-fields in aerody-
namics. This is due to the fact that the wake is fully three-dimensional and
unsteady; moreover, many experiments have focused on trimmed conditions
which involve cyclic pitch that complicates the wake and makes both ex-
periments and computations difficult. As is well known, it is difficult and
expensive to calculate accurately the wake position beyond one revolution of
the rotor (Tung and Lee [1994], Tung et al. [1996]). The major objective of
the the analytical and computational work is to investigate whether classical
invisid lifting line and lifting surface methods applied locally near the wing
tip can describe the origin of the tip-vortex. If so, this will result in the abil-
ity to predict circulation, asymptotic core radius, initial tip-vortex position,
and local blade loads accurately. It may seem odd to describe the formation
of the tip-vortex in this manner when viscous flow methods have been used.
However, correlation of experimental data by several authors (Mahalingam
[1998], Bhagwat and Leishman [1998]) has revealed little dependence on the
Reynolds number if the flow remains substantially unseparated.

In this chapter, we review the literature dealing with the formation of the
tip-vortex on both fixed and rotary wings together with a brief introduction
to the helicopter and helicopter aerodynamics.




1.2 The Fixed Wing Wake

The accurate calculation of the strength and the position of the tip-vortex
shed from a lifting wing is a critical problem for aircraft because the flow in
the tip region can have a great influence on the performance of the wing. In
the tip region, the bound circulation drops to zero and vorticity must be shed.
The shed vorticity forms the trailing vortex system which is responsible for
the downwash and the induced drag and consequently has a major effect on
the performance of the wing. In addition, for a large wing, the shed vortices
can be very strong (strong rotational flow and strong downwash) and long-
lasting. If a following aircraft encounters this wake at a shallow angle of
incidence, it can experience a large roll movement due to the strong rotating
flow or a strong downwash and result in a significant loss of altitude. If such
an encounter occurs when the aircraft is already near the ground in landing
or takeoff regimes, the result can be disastrous.

The region immediately downstream of the wing, referred to as the near
wake or rollup region, is strongly three-dimensional. In the tip region, the
bound circulation drops to zero rapidly and because the vorticity of the vortex
filament is associated with the gradient of the bound circulation, the vortex
filaments in the tip region will roll up with each other quickly and form a
strong single tip-vortex.

Many researchers have investigated the fixed wing trailing vortex wake
including Batchelor [1964], McCormick et al. [1968], Brown [1973], Moore
and Saffman [1973], Francis and Kennedy {1978], McAlister and Takahashi
[1991], Dacles-Mariani et al. [1995], Denvenport [1996] and Christopher et
al. [1999]. As noted by Francis and Kennedy [1978], vortex formation be-
gins to occur almost at the leading edge of the wing. This results in the
picture of the tip-vortex as a collection of vortex-like lines shed from those
discrete positions on the wing which appear helical in nature as depicted in
the photograph on Figure 1.1; these streakline patterns show the behavior of
trailing vortices shed from those discrete positions and illuminate the region
around the vortex core; note that some of the vortex-like lines wrap from the
underside. Such a filament-like structure for the tip-vortex is mentioned by
Lanchester [1991] indicating a long history of this interpretation. However,
no computational model of the tip-vortex incorporating a model of this type
has been constructed.

A central feature of tip-vortices is the presence of axial flow in the core.
Batchelor [1964] has shown that, in the absence of viscosity, the axial velocity




Figure 1.1: Vortex wake of a fixed wing as photographed by Head [1982].




is jet-like in the sense that the velocity at the center of the vortex along the
direction of the core is larger than the velocity in the surrounding free stream.
On the other hand, Moore and Saffman [1973] point out that a velocity deficit
has been observed in experiments. Batchelor [1964] has shown that the effect
of viscosity is to induce a deficit in the axial velocity profile, however, his
analysis is confined to distances far downstream of the blade tip. Moore and
Saffman [1973] have investigated the near wake region and found that there
is a viscous inner core in which axial velocities in the opposite directions can
occur; however, the influence of blade geometry is not addressed.

The recent model of Rule and Bliss [1996] suggests a jet-like axial flow
in the far wake of a fixed-wing aircraft. McAlister and Takahashi [1991]
found both jet-like and wake-like axial velocity directions in the tip-vortex
of a straight fixed wing, beyond a few chord lengths. They postulated a
difference between the axial velocity from a square-edged rotor tip versus a
rounded tip.

Devenport et al. [1996] studied the structure of the wing-tip vortex shed
by NACA 0012 half-wing and measured the velocity in the vortices using
hot-wire probe. They found that inside the core of the vortex, the flow
is laminar and therefore the core radius, peak tangential velocity and axial
velocity develop very slowly. Outside the core, the turbulence structure of the
spiral is dominated by the remainder of the wing wake which winds into an
approximately self-similar form. They also suggested that, at the upstream
locations, the core has a two-layered structure: an outer core that appears
to be a remnant of a secondary vortex formed during the roll-up process and
an inner core which grows within the outer core with distance downstream.

On the computational side, there are mainly two approaches to describe
the wake vortex system. One is the panel method (vortex lattice method)
which is used in the current work, and the other is the direct Euler/Navier-
Stokes simulation. Each of these methods has its own advantages and dis-
advantages. Although the panel method can roughly consider the effect of
compressibility by introducing the compressibility factor 3, the panel method
is mainly used to study an irrotational inviscid imcompressible flow (potential
flow) problem, while there is no limitations on applying the Euler/Navier-
Stokes simulation. On the other hand, the Euler/Navier-Stokes methods
suffer from large numerical diffusion contained in their solutions, while the
panel method, in which the vortex structure can be specified to a large ex-
tend, is almost free of numerical diffusion.

Roger [1991] used a second-order Euler method together with an adaptive-
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grid solver to study the tip-vortex flow fields around NACA 0015 airfoil. The
predicted results for the surface pressures and integrated lift agree well with
experiments. However, the core radius is larger and the peak induced tangen-
tial velocity behind the wing is less than the experimental data. This appears
to be caused by high numerical diffusion in the numerical approximation.

Dacles-Mariani et al. [1995] report solutions for the fixed wing in which
up to one million points with grid clustering have been used. They report
that they could resolve the outer portion of the vortex but could not resolve
the viscous portion of the core owing to high numerical diffusion. However,
the viscous core of the vortex is important because it determines the form of
the axial flow and the magnitude of the circulation of the tip-vortex.

Christopher et al. [1999] apply a fourth-order accurate differencing ap-
proximation in both space and time to study the near-wake development
of the flow past a NACA 0012 airfoil. They use a total of 1.33 million grid
points to compute the tangential velocity behind the wing and determine the
trajectory of the tip-vortex and the pressure contours. They suggest that the
numerical dissipation can be reduced by applying the high-order differencing
approximation because their results are better than those obtained by using
the low-order NASA CFD code: CFL3D.

Yeh and Plotkin [1985] apply the first-order “linear vortex” panel method
to calculate the three-dimensional wake roll-up process behind a large aspect
ratio, thin wing, in a steady inviscid incompressible flow. They divide the
wake into three regions: the adjoining region, near region and far region. In
the adjoining region and the near region, the wake has been represented by
triangular panels with linearly distributed spanwise vorticity and constant
chordwise vorticity. The collocation points are chosen to be at the geometric
center of each panel. In the far wake, the wake has been represented by
straight semi-infinite vortex segment extending to infinity. The wake geom-
etry is evaluated in an iterative scheme and the converged wake geometry
compares well with the result of constant doublet panel method applied by
Suciu and Morino [1976].

Osama et al. [1983] apply a “nonlinear hybrid vortex” method on a lifting
wing at high angle of attack. For the near field calculation, they use vortex
panels with linear vorticity distribution. In the far field, the distribution
of vorticity is reduced to vortex lines where the modified Biot-Savart law is
employed to calculate the induced velocity field. This coupling of a continous
vortex-sheet representation in the near field and a concentrated vortex-line
representation in the far field for solving the nonlinear lifting surface problem
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is this so called the “nonlinear hybrid vortex” method. They study both
steady and unsteady flow problems for a lifting wing. For the unsteady flow,
they solve the steady flow first and take the steady solution as the initial
condition for the unsteady problem. The net pressure distribution and lift
coefficient they obtained compare well with experimental data. However,
they did not present results for the formation of the tip-vortex.

1.3 The Rotor Wake

1.3.1 The Helicopter

Helicopter is an aircraft that uses rotating wings (rotors) to provide lift,
propulsion and control. In contrast with the fixed-wing aircraft, a helicopter
can generate these forces even when the velocity of the helicopter is zero.
Therefore, helicopter is used to perform tasks which fixed wing aircraft can
not do, such as hover and vertical flight, including vertical take-off and land-
ing. Thrust supports the helicopter weight and the propulsive force balances
both the aircraft and the rotor drag in forward flight, some other forces and
moments are required to control the helicopter position, attitude and veloc-
ity. All these forces and moments are supplied by the helicopter rotor. The
rotor generates such forces as a result of its relative motion with respect to
the air. There are four regimes in which the helicopter operates; namely
hover, vertical climb, vertical descent and forward flight.

When a rotor provides the lift, it shed a trailing vortex system which
interacts with the rotor and the helicopter body. These interactions make
the flow field around the helicopter very complex; morever, they are source
of considerable noise and vibration.

The primary focus of this work is to study the formation of the rotor
wake. The rotor wake computation and other study areas dealing with the
flow around the helicopter form the field of helicopter aerodynamics. In the
next section, a very brief review of the helicopter aerodynamics is presented.

1.3.2 Helicopter Aerodynamics

Helicopter aerodynamics studies the flow field around the helicopter. Figure
1.2 from Caradonna [1992] depicts various major rotor craft problems. It
shows several fluid dynamic problems. As the blades rotate, the tip-vortex




shed from one of the blades may encounter with the following blades; this
phenomenon is called blade-vortex interaction (BVI) which is a major source
of the rotor noise. The blade-vortex interactions are most severe in verti-
cal descent and landing. Another important aerodynamic interaction is the
vortex-fuselage in which the tip-vortex convects down away from the rotor
and collides with the airframe. Also there is vortex interaction between the
tail rotor and the main rotor. In forward flight, the helicopter has a transla-
tory velocity and thus the rotor blades have different relative air velocities as
shown on Figure 1.3. The advancing blade has a velocity relative to the air
higher than the retreating blade. Due to the different relative velocities, the
rotor needs to be trimmed. This requires periodic adjustment of the angle of
attack of the rotor blades azimuthly in order to balance the moment arising
due to the lift force. On the retreating side, the velocity relative to air is low
and thus the angle of attack has to be increased. This may lead to stalled
flow and viscous effects can become important. On the advancing side, the
flow may be transonic; thus near the tip of the blade shock waves can form.

1.3.3 The Rotor Wake

On a three-dimensional blade, conservation of vorticity requires that the
bound circulation be shed into the wake from the tip to the root. Also
vorticity is left in the rotor wake as a conseqence of radial and azimuthal
changes in the bound circulation. The trailed vorticity -, is generated owing
to the radial variation of the bound circulation and is normal to the trailing
edge of the rotor blade. Near the tip and root, the trailing vortices roll over
each other and form the tip and root vortex; while in the inboard portion of
the blade, there is a vortex sheet as shown on Figure 1.4. For unsteady state,
rotating blade causes the azimuthal variation of the bound circulation and
thus the trailing vorticity is not constant downstream and correspondingly,
the shed vorticity is generated. The shed vorticity <s, due to the variation
of the trailing vorticity, is parallel to the trailing edge of the rotor blade. v,
and -y, are defined in Johnson [1980] as

or
M=o (1.1)
1 00
’YS = e ——— . (1.2)
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where I' is the bound circulation, r is the radial position on the blade, ¢ is
the rotor azimuth angle (see Figure 1.3) and ur is relative air velocity of
blade section tangent to the disk plane. All these derivatives of the bound
circulation are evaluated at the time the wake element leaves the trailing
edge of the blade. The typical variation of lift L, the bound circulation T’
and the corresponding trailed vorticity -y; are depicted on Figure 1.5.

As described in Johnson [1980], owing to the rotation of the blade, the
lift and the corresponding circulation are concentrated at the tip. In the tip
region, the circulation drops quickly to zero over a finite distance. Owing to
the high rate of change in the circulation, the strength of the shed vorticity
is very strong, which causes the shed vortices to quickly roll up into a strong
single tip-vortex. In the inboard portion of the blade, the bound circulation
drops off gradually to zero at the root. Hence there is an inboard sheet of
trailed vorticity in the wake with the opposite sign to the tip-vortex. Since
the radial variation of the bound circulation is small away from the rotor-tip,
the inboard vortex sheet is generally much weaker and more diffuse than the
tip-vortex. Figure 1.6 depicts the complexity of the shed wake of a single
bladed rotor from Gray [1956].
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Figure 1.5: Sketch of typical radial distribution of the blade lift L, bound
circulation I' and trailing vorticity 7;. From Johnson [1980].

From the viewpoint of pressure, the tip region contains a complex three-
dimensional viscous flow field which results from the pressure difference on
the upper and lower surfaces on a lifting airfoil. Because at the wing tip,
pressure discontinuity is not possible, the pressure difference on the blade is
gradually relieved towards the tip and finally the pressure difference is zero at
the wing tip. Associated with this pressure field, near the wing tip, the fluid
particles roll up and form the tip-vortex which is convected downstream by
the local streamwise velocity. The core radius of the tip-vortex is defined as
the half distance between the minimum and maximum tangential velocities.

Many experimental investigations have focused on the wakes of helicopter
rotor blades and a survey of these results is presented in Conlisk [1997]. A
relevant paper on the influence of tip-shape on various integrated properties
such as lift and moment coefficients is by Berry and Mineck [1980]. However,
detailed velocity and pressure measurements of the very near wake of a rotor
blade have, in general, not been available until very recently.

McAlister et al. [1995] have measured the fully three-dimensional veloc-
ity field for a rigid rotor blade; the measurements include data at 0.3-chord
length downstream where origin of the tip-vortex in particular can be ana-
lyzed. According to McAlister et al. [1995], the vortex begins to form near
the point of maximum thickness on the top of the blade. The center of the
vortex is offset inboard a small amount and the circulation within the vortex
varies with the rotor phase angle. The vortices leave the wing in the chord-
wise direction at the trailing edge as in the case when the classical Kutta
condition is applied.

Most rotor-tip vortices are helical, with a strong velocity component di-
rected along the axis of the core. As with the fixed wing, there is a surpris-

11




| N f
RO

TIP | 2/ \.\ I\VORTEX

VORTEX /) !

SHEET
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ing amount of disagreement regarding the axial velocity in the vortex core,
even about its sign. Shivananda et al. [1978] used a split-film anemometer
to resolve all three components of velocity in the wake of a single-bladed,
square-edged NACAQ012 rotor in hover. They found a wake-like core: the
axial velocity was directed back along the trajectory of the vortex toward the
blade. The measurements by McAlister et al. [1995] and McAlister [1996]
show that, at three chord-lengths downstream of square-tipped NACA0012
rotor blade in hover, the axial velocity of the tip-vortex is directed back to-
ward the blade and of the same order of magnitude as the peak swirl, and is
about 9% of the tip speed.

Komerath et al. [1998] studied the same rotor-blade wake, and resolved
all three components of velocity in the vortex using laser velocimetry. They
were able to achieve high data rates using an off-axis light receiving sys-
tem, and incense smoke particles which stayed inside the core. They showed
not only a wake-like vortex core, but also secondary features inside the core
indicating several layers of vortex sheet roll-up. There is some flow visu-
alization evidence in the literature on propeller wakes which supports this
finding (Cook [1972]). Other experiments (Mahalingam [1996]) in the wake
of NACA0015 rotor in forward flight show large wake-like axial velocity both
in the tip vortex and in the inboard sheet and strong evidence of secondary
features in the core.

Bhagwat and Leishman [1998] use a three-component Laser Doppler Ve-
locimetry to study the tip-vortex flow field. They report that the peak value
of the induced tangential velocity decays and the core radius grows in a loga-
rithmic trend downstream which indicates viscous diffusion in the tip-vortex.
They find Reynolds number not to appear to have a strong effect in the flow
field. They also correlate the maximum bound circulation with the strength
of the tip-vortex which is formed from the roll-over trailing vortices. The
measurements show the strength of the tip-vortex to be approximately 85
percent of the maximum bound circulation and the remaining to be con-
tained in the inner vortex sheet.

With the improvement in the speed and storage of modern supercomput-
ers and the development of parallel processing, direct Euler/Navier-Stokes
simulations have been conducted in the rotor wake calculation by apply-
ing higher-order accurate approximation in both space and time (Tang and
Baeder [1999], Christopher et al. [1999] and Hariharan and Sanker [1999]).
Tang and Baeder [1999] apply an improved third-order accurate Euler/Navier
Stokes solver and a grid redistribution method to simulate the hovering rotor
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flow field. They used about half a million grid points and computed the tan-
gential induced velocity behind the rotor. They compared the results with
the code without a grid adaptation and suggested that numerical diffusion is
reduced by applying both a higer-order Euler/Navier Stokes solver and the
grid adaptation. Christopher et al. [1999] apply the fourth-order accuracy
in both space and time and also demonstrate low dissipation.

Hariharan and Sanker [1999] apply a seventh order spatially accurate
ENO (Essentially Non-Oscillatory) method to study the unsteady rotor tip-
vortex structure. They report that it is neccessary to capture the correct
axial velocity (jet-like versus wake-like) because the axial velocity is very im-
portant in calculating the tangential velocity accurately. If the axial velocity
is jet-like, then the peak-to-peak variation of the tangential velocity remains
at a certain value. If the axial velocity switches to a wake-like structure owing
to numerical dissipation downstream, the peak-to-peak variation of the tan-
gential velocity changes to a different lower value downstream. They suggest
that the axial component can be correctly captured over 50 chord lengths
with a grid of 270,000 points by implementing the seventh order spatially
accurate ENO method.

As mentioned above, different from the Euler/Navier-Stokes simulation,
in panel method (vortex lattice method), the wake structure can be specified
to a large extent. Generally, there are three types of wake models used in the
panel method namely; Rigid Wake, Prescribed Wake and Free Wake models.
A brief discussion on each of them is presented subsequently.

1.3.4 'Wake Models

A good review of the development of the wake model from the rigid wake
model, prescribed wake model to free wake model is given by Gray [1991].
The rigid wake model assumes that the wake consists of a series of vortex
lines. Each vortex line forms a skewed helix, whose geometry is set by the
forward speed of the helicopter and the mean inflow velocity (axial flow)
through the tip path plane. The wake is not allowed to deform. The problem
in using this model is that the wake does not contract and therefore, the
results do not agree with the experiments.

The prescribed wake model overcomes this disadvantage by utilizing ex-
perimental data to predict the wake geometry including the tip vortex and
the inner vortex sheets. But this model is not truly predictive because it
requires experimental data.
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A free wake model allows the wake to develop under the influence of all
the components i.e., the free stream velocity, the self-induced velocity, the
effect of the blade. This is the standard way now to calculate the wake and
the blade loads. Although the free wake model has demonstrated improved
performance predictions over most of the blade, it is not appropriate near
the rotor-tip because the free wake model assumes that the tip-vortex rolls
up completely at the trailing edge of the rotor blade where it emanates. This
deficiency leads to a considerable difference between the numerical calcula-
tions and experiments in the spanwise distribution of the bound circulation
near the rotor-tip. Therefore, it is necessary to develop a satisfactory model
to acount for the formation and downstream development of the tip-vortex
for the blade load calculation in the tip region which is the main concern of
the current work.

Prescribed, free wake model together with lifting-line or lifting surface
methods have been widely used to study the rotor hovering performance and
propellers (Kocureket al. [1976], Miller [1982], Shenoy and Gray [1980] and
Hess and Valarezo [1985]).

Katz and Maskew [1986] applied panel method to study the unsteady
low-speed flow over both fixed wings and rotors. A modified potential-flow
panel method is used together with a time-dependent vortex wake model to
simulate the wake. Unlike the wake models metioned before, the zero normal
velocity on the body surface is related to time, and the corresponding time-
dependent equivalent Kutta condition is appied to the wake model. At every
time interval, a new wake element with constant strength which satisfies the
Kutta condition is shed from each panel on the trailing edge of the wing and
moves with the local stream velocity, which is due to the free stream flow
and the induced velocity by other vortex elements. The shed wake elements
are allowed to roll up. Katz and Maskew [1986] applied this method to
study the spanwise lift distribution for a two-bladed rotor and they found
a large difference between the experimental results and the computational
results due to the undeveloped wake. They suggested this deficiency can be
improved by adding a far wake model or running the code for more time steps
(at least three complete revolutions). Because this wake model considers the
roll-up process of the shed vortices, it can obtain good agreement with the
experimental data near the tip-region. However, the problem in using this
method is time consuming because of two reasons. First, every time interval,
new wake panel element must be shed from the seperation line of each panel
on the trailing edge of the wing and moves with the local stream velocity
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and then the bound circulation on the wing is calculated. Second, after up
to three complete revolutions, the numerical result for the bound circulation
agrees well with the experimental data. We will show that using Burggraf’s
[1999] theory and a simple rotor wake-contraction model, similar results can
be obtained analytically.

1.3.5 Current Work

The present work is to delineate the major features of the origin of the tip-
vortex and the rotor wake computationally, resulting in the ability to predict
accurately circulation, asymptotic core radius, initial tip-vortex position, and
local blade loads. While the rotor tip-vortex is of primary interest, the tech-
niques developed would be applicable to fixed wings as well. The lifting
surface theory is applied in the bound circulation calculation and thus a
brief introduction to the panel method is presented in the next chapter.

From the analytical and computational perspectives, the flow near the
wing tip can been viewed as the inner solution in a matched asymptotic
expansion in the small parameter defined as the ratio of the chord to length
of the rotor blade. This situation is depicted in Figure 1.7. This idea is
not new; Van Dyke [1964] alluded to this in his discussion of the fixed wing
case. It is shown that for a fixed wing, in the tip region, to leading order,
the lifting-line integral equation for the bound circulation has an analytical
solution given by Stewartson [1960] and a sketch of the result is presented
on Figure 1.8. Far from the tip, the circulation is constant and so to leading
order, no vorticity is shed there, while in the region where the circulation
varies, the individual vortex filaments would be expected to roll over each
other and form a strong tip-vortex. We apply the lifting surface method to
obtain the chordwise and spanwise distributions for the bound circulation
and the vertical induced velocity behind the wing and compare these results
with the experimental data of McAlister and Takahashi [1991]. The roll-over
process of the trailing vortices is presented as well.

The rotary wing case is considered next. For a rotary wing, the lead-
ing order-inner solution for the bound circulation has been derived using
Burggraf’s lifting-line theory [1999]. It is shown that in the tip region, to
leading order, the rotary wing is similar to the semi-infinite fixed wing and
the difference is only a parameter which is dependent on the aspect ratio,
the angle of attack and the number of the blades. The analytical uniformly-
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Figure 1.7: Definition of the inner and outer problems for the calculation of

the flow past a two-bladed rotor.
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Tip Vv

Figure 1.8: Sketch of the bound circulation for a semi-infinite fixed wing; in
the region where the bound circulation varies, the individual vortex filaments
would be expected to wind around each other to form the tip-vortex.
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valid solution for the bound circulation is presented. Next, the lifting-surface
method is applied and the roll-over process of the trailing vortices is illus-
trated. The induced vertical velocity is calculated numerically and compares
well with McAlister et al. {1995]. Using “multiplicative composition” to com-
bine the inner and outer solutions, the uniformly-valid solution is obtained
for the bound circulation over the whole rotor blade. A sketch of the bound
circulation is shown on Figure 1.9.

Tip r

Figure 1.9: Qualitative sketch of the bound circulation for a rectangular,
untwisted rotary wing. In the tip region where the bound circulation drops
to zero at the tip quickly, the individual vortex filaments would be expected to
wind around each other to form the strong single tip-vortex. In the inboard
portion of the blade, the bound circulation drops off gradually to zero at
the root and hence there is an inboard sheet with the opposite sign to the
tip-vortex.




The influence of rotor-wake contraction on the bound circulation is con-
sidered next. Two types of wake models are applied: the vortex cylinder
model and the discrete vortex ring model. First, the vortex cylinder model is
used to represent the rotor wake contraction and the computed bound circu-
lations compare fairly well with the experimental data from Caradonna and
Tung [1981]. The weakness of this vortex-cylinder model is that the vorticity
is assumed to be uniformly distributed along each semi-infinite cylinder and
this assumption is not accurate. The discrete vortex-ring model overcomes
this weakness and the results using this model compare well with Landgrebe’s
[1972] results.

Finally, laser velocimetry measurements were conducted on the wake of
a two bladed teetering rotor in forward flight to gain an understanding of
both the vortex formation process and how the vortex properties evolve into
the near wake. Circumferential velocity profiles of the vortex during the
formation process were first observed at a chordwise location of 0.47. In the
past four years, the experiments have been directed towards:

e Collecting and correlating experimental results and data on fixed-wing
and rotary wing vortices.

e Performing experiments on rotary wing vortices to answer some key
unknowns.

o Estimate measurement errors due to particle ”spinout”.

e Developing methods of measuring the tip vortex strength and structure
efficiently.
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Chapter 2
Panel Methods

2.1 Background

In the current work, lifting-surface theory is applied to the flow near the
wingtip by using a panel method. Panel methods are used to solve potential
flow problems and are a logical extension of the analytical methods to deal
with the complicated surface geometry. By applying the panel method, the
solution to the potential-flow problem is reduced to finding strengths of singu-
larity elements (source, doublet or vortex) distributed over the body surface.
In this work, the flow field in the tip region is assumed to be incompressible,
inviscid and irrotational and thus it is appropriate to apply the panel method
to investigate the flow field. In this chapter, a brief introduction to the panel
method is presented. First, we review its application to two-dimensional air-
foil problems. Then, we extend the solutions for two-dimensional airfoils to
the three-dimensional wings used in this work.

2.2 Two-Dimensional Airfoil Aerodynamics

Consider a two-dimensional airfoil immersed in a potential flow as shown on
Figure 2.1; then the total potential ®;, can be expressed as a sum of a
perturbation potential ® and the free-stream potential ®:

q)total =o+ Qoo (21)

and
VQ(I)total =0 (22)
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Figure 2.1: Potential flow over a two-dimensional airfoil.

The total potential ., satisfies two boundary conditions. Firstly, the nor-
mal velocity at the body surface vanishes and this condition can be expressed
by

ve®-7i=0 (2.3)

where 7 is the surface vector. Second, the flow disturbance due to the body’s
motion relative to the free stream flow vanishes far from the body. This
boundary condition is expressed as

lim 7@ =0 (2.4)
where r is the position vector, i.e., distance from the body. This condition is
automatically satisfied for all the singularity distributions of source, vortex
or doublet types (Katz and Plotkin [1991]) and thus the problem has been
reduced to finding the strengths of the singularity elements on the body
surface which satisfy (2.3).

The solution to (2.3) is not unique even after selecting a desirable com-
bination of singularity elements (source, doublet or vortex) and thus an ad-
ditional condition must be applied in the flow field. According to Helmholtz
theorem, a vortex can not start or end in the flow field, so the bound circu-
lation on the wing must be shed into the flow field correspondingly. To make
the solution unique, the wake must be shed at the trailing edge; i.e., Kutta
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condition is applied to the flow. One statement of the Kutta condition is
that the flow is required to be parallel to the trailing edge of the wing as it
leaves, thus fixing the circulation generated by the airfoil. Mathematically,
Kutta condition requires the vorticity component parallel to the trailing edge
~vr.E. to be zero,

Yre. =Y+ =0 (2.5)
where 7y and 7y, are the corresponding upper and lower surface vorticities.
Kutta condition also requires the shed vorticity yw to be aligned with the
local flow direction. Figure 2.2 illustrates the implementation of the two-

z |

=Y + :O
Uoo 'Y . YT.E. YU YL
—— {\ ,Y w

° u

T

Figure 2.2: Implementation of the two dimensional Kutta condition on an
airfoil when using surface vortex distribution. The vorticity at the trailing
edge yr.g. which is the sum of the corresponding upper and lower surface
vorticities vy and -y, must vanish. Also the shed vorticity vy is aligned with
the local flow direction.

dimensional Kutta condition for a vortex distribution on an airfoil.

Now we consider a zero thickness, symmetric airfoil at an angle of attack
oy submerged in an inviscid, incompressible and irrotational flow as shown
on Figure 2.3. The leading and trailing edge of the airfoil are located at
z = 0 and z = c respectively and U, is the free stream velocity. We apply
unknown continous vorticity distribution «y(z) (circulation per unit length)
on the airfoil. On the plane z = 0, the velocity induced at xy by vorticity
v(z) located at the point z is —ﬁ(f_%)- Integrating y(z) from the leading
edge (z = 0) to the trailing edge (z = ¢), the zero normal-velocity boundary
condition at the given point zy becomes

1 fe dx
%/o ')/(ar:)x0 5 et (26)
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where 0 < zg < c.

2 |\

Ap(x)=pU_Y(x)

T.E

L.E

Figure 2.3: Continous vortex distribution on a zero thickness, symmetric
airfoil. Note y axis is normal to x-z plane and outward.

As mentioned above, the solution for equation (2.6) is not unique and
thus the two dimensional Kutta condition is applied, requiring (c) = 0.
The analytical solution for equation (2.6) is given by Glauert [1948] as

1+ cosf
¥(0) = 2Usoro pey; (2.7)
where 0 is defined by
z = %(1 — cos0) (2.8)

which is shown on Figure 2.4. Figure 2.5 shows the distribution of v(z).
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Figure 2.4: Plot of the transformation z = £(1 — cosf).

Having obtained the distribution of vorticity on the two-dimensional lift-
ing airfoil, the pressure, lift and moment can be calculated. The pressure dif-
ference Ap(z) between the upper surface p, and lower surface p; is obtained
by applying the steady state Bernoulli equation on the airfoil boundary. In a
steady-state flow, the velocity at any point u in the flow field is a combination
of the free stream velocity and the perturbation velocity, as (Uscosag + %:i,
Uoosinag-i—%‘—f). Substituting u into the Bernoulli equation and taking into ac-
count the small-disturbance assumptions (42 and 42 << Uy and op << 1),

we have the linearlized Bernoulli equation:

P
PP = 5@ -U2) (29)
0P
= —pU,— 2.11
PUc - (2.11)
where p is the local pressure and p, is the pressure at infinity. For a vorticity
distribution y(z), %%(x,0+) = 1(2’—”2 and at z = 0F plane, $2(z,07) = —1(21”2

on the plane z = 0~ (Katz and Plotkin 1991). Hence the pressure difference
between the upper and lower surface Ap is

Ap(z) = pi—pu (2.12)
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Figure 2.5: Nondimensional vorticity distribution on a flat, zero thickness,
symmetric airfoil at an angle of attack og. The two dimensional Kutta con-
dition is satisfied at the trailing edge of the airfoil y(c) = 0.
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= pUx(z) (2.13)

The lifting force L is obtained by integrating Ap(z) over the airfoil:
L= /C Ap(z)dzr = /c pUsoy(z)dz (2.14)
0 0

Substituting Glauert’s [1948] solution(2.7) into equation(2.14), we obtain the
lift force acting on a thin, symmetric airfoil at an angle of attack aq

L = pU2 mcay (2.15)

The pitching moment Mj about the leading edge is
M, = / Ap(z)zdzr = /0 pUsoy(2)zdz (2.16)
0

Hence for this zero-thickness symmetric airfoil,

2

M, = pUgovri—ao (2.17)

The center of pressure z.,, where the moment is zero (this also can be

considered to be the point where the lift force acts), can be obtained by
balancing the pitching moment and the product of the lift force and z,

Tep = % (2.18)
Substituting My and L into equation (2.18), we find that for a zero-thickness
symmetric airfoil at an angle of attack oy, z, is located at the one-quarter
chord (z., = }c). Because the lift force acts at the one-quarter chord, a single
point vortex with the strength I' = [7 v(z)dz is applied at this point to re-
place the continous vortex distribution «y(z). Note that the two dimensional-
Kutta condition is satisfied automatically by Glauert’s [1948] solution(2.7)
(recall y(c) = 0). Since the vorticity distribution (z) is represented by a
single point vortex I', the zero normal-velocity boundary condition at the
surface can be specified correspondingly at a single point (collocation point)
and the location of this point is obtained by solving

r

L UL 2.1
27 (Zeot — Tep) a0 (2.19)
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Figure 2.6: The “lumped-vortex” element structure.

and z.y = %c as shown on Figure 2.6. In Figure 2.6, the concentrated point
vortex is located at the one-quarter chord and the collocation point at the
three-quarter chord and this two-dimensional point-vortex singularity may
be called a “lumped vortex” element.

Now we apply the “lumped-vortex” element to a two dimensional airfoil.
We divide a thin airfoil camberline into N panels and each panel has been
replaced by a “lumped vortex element” as shown on Figure 2.7. Because the
“lumped vortex” element satisfies the Kutta condition automatically, the last
panel (panel 5 in the figure) inherently fulfills this requirement and no addi-
tional specification of the Kutta condition is needed. For a collocation point
on panel k£ (k=1,...,N), the normal velocity induced by panel j is defined
as the influence coefficient A;;,7 = 1,..., V. Taking the circulation of the
point vortex on panel j as I';, evaluating the normal velocity at each collo-
cation point and applying the zero normal-velocity condition on each of the
N collocation points results in N equations:

All A12 cct AIN Fl Rl
Ay Ay - Apn Ly | _ ]| Re (2.20)
Ant An2 -+ Ann In Ry
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Figure 2.7: Point vortex representation of the thin, lifting airfoil.



where Ry, k = 1, ..., N, is the normal component of the free stream velocity at
each collocation point and is balanced by the total normal velocities induced
by all the panels. The values of I';, j = 1, ..., N can be computed numerically
by solving this fully-dense-matrix equation. Having solved for the value of
T';, when assuming incompressible flow, the pressure on the surface and the
fluid dynamic loads can be calculated using Bernoulli’s equation.

Compressibility can be incorporated by introducing the Prandtl-Glauert
compressiblity factor § defined as

B=Vi- M (2.21)

where M is the Mach number; however, the viscous effects are more com-
plicated because the boundary layer must be considered in the solution (see
Katz and Plotkin 1991 for more details).

The scheme illustrated above can be extended to introduce time-dependent
terms from the boundary condition (2.3) when 7 varies with time. The time-
equivalent Kutta condition is also applied (see Katz and Plotkin 1991 for
more details).

2.3 Three-Dimensional Wing Solutions

In this section, we extend the numerical solution developed for two-dimensional
airfoil problems to three-dimensinal wings. We divide the wing surface into
N surface panels and N, wake panels as shown on Figure 2.8. As men-
tioned above, for a two-dimensional airfoil, each panel has been replaced
by a two-dimensional point vortex (i. e. the “lumped vortex” element);
while for a three-dimensional wing, each surface panel is represented by a
three-dimensional singularity (discussed below). Also, a collocation point is
selected on each body surface panel where the zero normal velocity bound-
ary condition is satisfied. For a collocation point P on a wing surface panel
k(k = 1,...,N) shown on Figure 2.9, the normal velocity induced by panel
j is defined as the influence coefficient Axj,j = 1,..., N + N,,. Taking the
strength of singularity element on the wing surface panel as y;,j = 1,..., N
and on the wake as 0;,7 = 1, ..., IV, evaluating the normal velocity induced
at each of the N collocation points and applying the zero normal-velocity
boundary condition at each of the N collocation points results in N equa-
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where R,k = 1, ..., N is the normal component of the free stream velocity at
each collocation point and is balanced by the total normal velocities induced
by all the panels. Applying the Kutta condition, the strength of each singu-
larity element on the wake panel o; can be expressed in the corresponding
upper and lower wing-surface singularity elements p;. Therefore, these N
equations can be written as:

! ! !/ !
11 12 1IN H R1
! Al ! R
2
IR B I e B (2.23)
! ! ! !
Ay Aye - Aln UN Ry

The values of p;,5 = 1,..., N can be computed numerically by solving this
fully-dense-matrix equation. Having solved for the value of u;, the pres-
sure on the surface and the fluid dynamic loads can be calculated using the
incompressible Bernoulli equation.

Now we consider the three-dimensional singularity elements. Among the
three dimensional singularity elements, the vortex-ring and horseshoe-vortex
element are commonly used to represent the lifting-wing surface in the heli-
copter rotor-performance calculation.

e Vortex ring
A vortex ring consists of four line vortex segments with the same
circulation. Figure 2.10 shows a vortex ring composed of four straight
line vortices: AB, BC, CD and DA. The velocity induced by each
segment is evaluated using the Biot-Savart law. This vortex ring model
is applied to represent both the wing surface and the wake panels.

Let us consider the wake panel first. For a steady-state flow, the Kutta
condition requires that the wake circulation be constant in the stream-
wise direction and equal to the surface circulation at the trailing edge
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Figure 2.8: Approximation of the wing surface by panel elements.
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Figure 2.9: Influence of panel j on collocation point F.
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Figure 2.10: A vortex ring element.
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of the wing where it emanates. In effect, the wake panels are trailing
strips of vorticity.

Now we replace each surface panel with the vortex ring. Each panel
edge is represented by a straight-line vortex and thus a rectangular
vortex ring is formed. The collocation point is located at the geometric
center of each panel as shown on Figure 2.11. Kocurek et al.[1976]
applied this method to represent the rotor blade in a hover-performance
calculation. The shortcoming with such replacement is that for each
last chordwise panel (i.e. those on the trailing edge of the wing), the
Kutta condition is not satisfied because the bound vortex is not located
at the one-quarter chord line (recall the “lumped vortex element”).
The horseshoe vortex panel method overcomes this disadvantage and
is discussed subsequently.

Horseshoe vortex

In the current work, the three-dimensional horseshoe vortex is applied.
Now we explain how to replace each surface panel by a horseshoe vortex
and how to select the collocation point to satisfy the three-dimensional
Kutta condition. L

A horseshoe vortex is a simplified case of the vortex ring. A horseshoe
vortex consists of a bound vortex along the panel quarter-chord line
together with two trailing vortices lying along the panel edges and
extending to infinity downstream. The boundary condition of zero
normal velocity on the wing surface is satisfied at the three-quarter
chord point on the centerline of each panel (collocation point) and the
trailing vortices emanate from the panel quarter-chord line (see Figure
2.12). Actually, this model is based on the two-dimensional “lumped
vortex” element model discussed above. By placing the leading vortex
segment of the horseshoe vortex at the quarter chord line of the panel,
the two-dimensional Kutta condition is satisfied along the chord and
it is assumed that the two-dimensional Kutta condition satisfactorily
accounts for the three-dimensional Kutta condition.

Applying N horseshoe panels over the three-dimensional wing surface
(small lift, thin airfoil and large aspect ratio), the solution can be ob-
tained by solving the N x N fully-dense-matrix equation.
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Figure 2.11: Vortex ring model.




Collocation point v

. three quarter chord
Leading vortex 1line

segment
one quarter chord

Horseshoe

Trailing vortices shed
from one quarter chord
line of each panel

Infinity

Figure 2.12: Horseshoe vortex model.
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Chapter 3

Asymptotics of Lifting Line and
Lifting Surface Theory for a
Fixed Wing

3.1 Introduction

The basic structure of the vortex wake of a fixed wing is that the shed vor-
ticity ultimately rolls up into a strong tip-vortex. Because the flow in the tip
region is highly three-dimensional and unsteady, it makes both experiments
and computations extremely difficult. A brief review of the consequence and
complexity of the tip-vortex and the means to reduce the tip-vortex strength
has been presented by Jain-Ming James Wu [1992].

In this chapter, we consider a fixed wing of large aspect ratio. From
the analytical and computational perspective, the flow near the tip can be
viewed as the flow over a semi-infinite wing. For a semi-infinite wing, using
the method of matched asymptotic expansions in terms of a small parameter
defined as the inverse aspect ratio, Van Dyke [1964] has shown that the classi-
cal inviscid lifting-line integral equation is obtained. It is shown here that this
lifting-line equation has an analytical solution given by Stewartson[1960] for
the inner region near the tip. A similar analysis for the lifting-surface theory
is performed and the numerical results compare well with Stewartson[1960]’s
analytical solutions and the experimental data of McAlister and Takahashi
[1991].

The bound circulation drops to zero at the wingtip, while away from the
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tip, it approaches a constant. Corresponding to this spanwise variation of
the bound circulation, the trailing vortices in the tip region roll over each
other quickly and form a strong single tip-vortex downstream. However, in
the region away from the tip, the trailing vortices roll up very slowly.

We applied our numerical technique to compute the induced vertical ve-
locity behind the wing and compare it with the experimental data of McAlis-
ter and Takahashi [1991] and the comparison is encouraging. This indicates
that viscosity and turbulence have only a minor effect on the initial formation
of the tip-vortex.

3.2 Theoretical Considerations

A mathematical basis for lifting-line theory for a fixed wing is given in Van
Dyke [1975] in which the method of matched asymptotic expansions is used
to construct the solution for the circulation and hence the effective angle of
attack a.. The effective angle of attack o, is defined as

Qe = Qo — O (3.1)

where oy is the geometric angle of attack and ¢; is the result of the downwash
induced by the wake

(3.2)

where w; is the downwash induced by the wake and U, is the free-stream
velocity. As illustrated by Van Dyke [1975], an outer region, in which the
complete wing is represented as a line of singularities, is matched with an
inner region represented as a locally two dimensional airfoil. The inverse of
the aspect ratio is taken as the small parameter for a series expansion. The
results for the lift-curve slope for the elliptic wing using this method can
be made more accurate as more terms are added to the asymptotic series
(Van Dyke [1975], p.175); this is important since the classical lifting-surface
method is much more computationally demanding than lifting-line theory.
It is clear, however, that Van Dyke’s [1975] analysis, carried out for a cusp-
shape tip for which there is no tip-vortex, breaks down near the noncusp-
shape tip, requiring an additional inner expansion for the region around the
tip (Van Dyke [1964, 1975]). In his analysis, the classical lifting-line model
breaks down in a region of width O(A~2) where A is the aspect ratio of the
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wing. It is for this reason that the tip-vortex circulation cannot be esti-
mated from lifting-line theory alone since the theory does not hold at the
tip. Consequently, the tip-vortex circulation must be estimated by some
other means. Since the circulation directly influences the subsequent posi-
tion of the tip-vortex and the intensity of the subsequent interactions with
other components of the wake, it is important to determine the circulation
as precisely as possible. We use lifting-surface theory to evaluate the inner
solution, valid near the tip.

3.3 The Lifting-Line Integral Equation For
the Semi-infinite Fixed Wing

In this section we develop a model to obtain the circulation of the tip vortex
by using the fundamental lifting-line integral equation. This is appropriate
since the large aspect ratio wing is, to leading order in the large aspect ratio,
a lifting line. We consider the steady incompressible flow past a fixed wing.

The integral equation of lifting-line theory has been derived for the case
of a fixed wing in many text books and the result is Katz and Plotkin[1991]

R | 1 (3 dI” dyg)
[*(y") = 5me <Uooa0 =/ i (3.3)
where I'* is the circulation, U, is the speed far from the wing and b is the
span of the wing; also ¢(y) is the local value of the chord. Here m is a
constant equivalent to the lift curve slope which is airfoil dependent. For a
flat plate, m = 2x. If the plane of the wing varies with span, ¢ = ¢(y). It
is important to understand the assumptions of linearized theory associated
with the derivation of this equation. First the trailing wake is assumed to
remain in the plane of the wing z = 0 for all time. Second, the pressure
difference between the bottom and the top of the wing must approach zero
at the tip, and so I'* = 0 there also.
Let us non-dimensionalize this equation by writing
F*
Usob

I' =
Then equation (3.3) becomes

I(y) = 2 A7'C(y) (ao L %1 ar’_dy, ) (3.4)




where y is dimensionless and y = 9{):, c(y) = ¢oC(y) and ¢p is the dimensional
reference chord, ¢y = 953 where S is the wing area. Thus A = Zbé is the aspect
ratio of the wing, assumed to be large. In the limit of very large aspect ratio,
to an observer placed a distance of the order of the semi-span away from the
wing, the wing profile (Figure 3.1(a)) looks as if it were a line, i.e. the lifting
line, as indicated by Figure 3.1(b). Away from the wing tip, since A is large,
the circulation can be expanded in powers of A~! and the leading order outer

solution is m 00 Cly)
Ply) ~ 2= (3.5)

Note that this value of the bound circulation is non-zero at the tip (provided
C(y) # 0) and so this solution breaks down near the tip of the wing where
the bound circulation must vanish. This error results in a tip-singularity in
higher- order terms.

To analyze the behavior of the bound circulation near the tip, we make
the transformation 1

Y= (g—y)Aﬂ

where (3 is a constant. Substituting into equation (3.4) we find that to balance
both sides, # = 1. If we assume that I" remains O(A~!) near the tip, and a
finite chord at the tip, then I' may be expanded as

F = A—IFI + A_QFQ + ...

and substituting in equation (3.4) above, we get

m 1 oo dly dY,
Fl (Y) = 2 Ctzp (ao ar Jo dYb YV — 1/0> (36)
and 1 (oo dl, dY,
Ty (Y) 2_—-0 (3.7)

T4l dY,Y — Y,

Note that for a rectangular wing Cy, = 1 and equation (3.6) is precisely the
equation solved by Stewartson [1960]. Thus to leading order near the tip, the
wing appears infinite in length and the solution is that of Stewartson [1960)

tYy

m 1 roo e~ _ 1t logbdd
Pl(Y) = 5a0 (1 - ;/0 me ™ Jo Tijrdt) (38)
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(b)

Figure 3.1: (a) Cartesian coordinate system relative to a fixed wing. (b) For
large aspect ratio A4, the wing appears as if it were a line in the outer region;
i.e. the lifting line.
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Equation (3.8) defines the bound circulation on the wing near the tip to
leading-order and this is the so-called inner solution. This solution compares
very well with the results of a numerical lifting-surface calculation which is
discussed in the next section.

3.4 Lifting Surface Theory For the Semi-Infinite
Fixed Wing

In this section we consider the lifting surface analog of lifting-line theory for
the semi-infinite wing. As with lifting line theory, the leading-order inner
solution near the wing tip corresponds to a semi-infinite wing.

The lifting surface equation for the finite fixed wing is given by Katz and
Plotkin[1991] where we have assumed a flat plate airfoil.

/ /ecw) W@ =2+ Bl =%0) b g (3.9)

(= — 20)? + (y — %0)?]?
where all lengths are made dimensionless on the semi-span and velocities
on the freestream speed Uy, and € = {. Solution of this equation for the
circulation per unit length 7, and -, give the solution in the z and y direction.

To focus on the region near the tipy = %, the inner solution, as in the previous
section, we define the inner variable as

X=zA

Y=(%~y)A

so that the lifting surface equation becomes

Ctip X X Y Y
L / / 7y ( )+ ix(V = Yo) yy v van=0  (3.10)

(X — X0)2 + (Y — Yo)?]?

This is the same equation as for the outer solution except for the limits on
the integration in Y. This means that to leading order, the inner solution
for the lifting surface is also for a semi-infinite wing. Unlike the lifting-line
equation, the analytical solution to this two-dimensional integral equation is
unknown and so we solve it numerically using a panel method.
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3.4.1 Panel Representation of the Semi-Infinite Wing

According to the method of Schlichting and Thomas [1947], the semi-infinite
wing may be represented by vortex panels distributed over its surface, as
illustrated on Figure 3.2 (a). In Figure 3.2 (a), only three chordwise and nine
spanwise panels including semi-infinite panels (discussed below) are shown,
while in the numerical calculation, ten chordwise and twenty spanwise panels
were used. FEach wing panel consists of a horseshoe vortex system with
a bound vortex along the panel quarter-chord line together with trailing
vortices lying along the panel edges and extending through the trailing edge
of the wing to infinity downstream. Figure 3.2 (b) shows a wing surface panel
replaced by a horseshoe vortex.

In the classical lifting-line theory, the shed wake is assumed to form in the
plane of the wing and the vortices are assumed to be straight line vortices,
which is a small-lift assumption, consistent with other assumptions in the
theory.

We now define local panel-based coordinates; define the z-axis to be ori-
ented in the chordwise direction, the y-axis spanwise, and the z-axis vertical
as shown in Figure 3.2 (b). z and y are measured from the midpoint of the
selected panel, and z from the plane of the wing. The panel-width dimensions
are 2a by 2b! in the chordwise and spanwise directions respectively. Then
the velocity induced by each horseshoe vortex segment is evaluated using the
Biot-Savart law with a cut-off parameter p as shown on Figure 3.3:

AV = L3« R (3.11)

where R = /R? + 12
The swirl velocity induced by a straight vortex segment with unit strength
as shown on Figure 3.4, is given as (Glauert 1948)

Vs cosfy — cosfr) (3.12)

wirl = Z?TFE(
By applying equation (3.12) to each straight vortex segment of a horse-
shoe vortex, the velocity induced by the entire horseshoe vortex is obtained.

Now we derive the velocity induced by the unit bound-vortex segment from
the Biot-Savart law. Figure 3.5 (a) shows a horseshoe vortex segment ABCD

1The variable b used in this section refers to the panel-width and not the wing span as
on Figure 3.1. The z,y, z coordinate system used in this portion of the section refers to
local panel coordinates as well.
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Figure 3.2: Horseshoe-vortex panel implementation of a semi-infinite wing.

(a) Definition of the global coordinates. Only thr

ee chordwise panels are

shown here. In the numerical calculation, ten chordwise panels are used. (b)

Definition of the local panel coordinates. The solid

box represents a surface

panel which is replaced by a horseshoe vortex (represented by dash lines).
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Figure 3.3: The velocity at P induced by a three-dimensional vortex using
the Biot-Savart law.
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Figure 3.4: Velocity induced by a straight vortex segment.
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Figure 3.5: Velocity induced by a horseshoe-vortex segment. (a) shows the
swirl velocity and (b) shows the z and z components of the swirl velocity.
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with the unit strength. For the velocity induced by the bound vortex AB at
P(x,y,z), the swirl velocity can be calculated as

y+b

cosfy = 3.13

1 JE@+22+(y+0)?2+22 (3.13)

cosfly = y—* (3.14)

JE+8?+(y—b)2+ 22
and
a
d=/(z+ 5)2 + 22 (3.15)
so the swirl velocity at P induced by AB is
1 y +0b y—b

szirl =

(3.16)

Now we consider the x and z components of the swirl velocity. Because

the bound-vortex segment AB is parallel to the y axis, so the y component
is zero. From Figure 3.5 (b),

UB(:E) Y, Z) = ‘/.SwiTISina (317)
Wp (KE, Y, Z) = ‘/swirlcosa (318)
and »
sina = (3.19)
(z+5)* + 22
cosa = trs (3.20)

(z+3)°+2?

Substituting equation (3.16) into equations above, we have

1 z
4 (z+ §)% + 22

y+b
JE+8+y+0)?2+22

x|

y—b ]
\/(x+%)2+(y——b)2+z2
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uB(:an7 Z) =

47r\/ —I—z2 Vi +5)2+(y+b)? +22~\/(x+§)2+(y—b)2+22)



1 T+ 3
2 X
4m (z + )2 + 22
y+b
JE@+48)2+ (y+b)2 + 22

wp(z,y,2) =

y—b ]
JE+82+(y -2+ 22

while the two unit trailing vortices produce the contributions can be obtained

similarily
1 z
m@nE) = s
a
a +1]
V@ + 82+ (y+0)? + 22
-1  y+b
wr, (z,y,2) = EWX
T+ 3
{ a)2 b)2 2+1]
(z+5)2+(y+b)?2+=2
and
-1 z
vr, (2,y,2) = me
[ .’L‘+'2‘ +1]
V@ +8)?+ (y -2+ 22
1 y—b
wr,(z,y,2) = me
T+ 3

[\/(a:+g-)2+(y—-b)2+z2+1

where u, v and w are the z, y and 2 velocity components respectively. Sub-
script B represents the bound-vortex segment and T3, T represent two trail-
ing vortices respectively.
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Now we consider the global coordinates. Define the z-axis to be oriented
in the chordwise direction, orginating at the leading edge of the wing, the
y-axis spanwise, originating at the wing-tip, positive inboard, and the z-axis,
vertical as shown on Figure 3.2 (a). The panel-influence coefficients Ag; are
given by the normal velocity induced in the plane of the wing at the 3/4
chord position on panel k due to the horseshoe vortex of unit circulation
with the bound vortex at the 1/4 chord position on panel j, as

Akj = wp(Zkj, Ykj, 0) + wry (Thj, Yrjs 0) + wr, (Thgs Yk, 0)

where

a
:ijzmk—m‘j+§

and
Yej = Yk — Y5
Note zk, ;j, Yk, y; are global variables and z;, yx; are the local variables
mk—mj-}—%and Y — Yj-
The boundary condition of zero normal velocity on the wing surface is
satisfied at the three-quarter chord point on the centerline of each panel and
the trailing vortices emanate from the panel quarter-chord line (see Figure

3.6). Thus the panel circulations I'y, k = 1,..., N may be evaluated from the
surface boundary condition, expressed as the linear equation

N
D ATy = ~we

j=1

For a flat-plate airfoil, the right side vector w is just the vertical component
of the freestream velocity vector; i.e., Uy in linearized theory.

Because of the strong variation of circulation near the wing-tip, it is
helpful to use panels of variable width. Guided by lifting-line theory, we
have chosen the variation

y=>btanf,0 <0 < /2

where b is the computational span of the wing. Thus distributing the panels
uniformly in the 6 variable increases the density of panels near the wingtips.
A constant chordwise width was used for each panel, since it was found less
important to have a similar distribution in the chordwise variable z.
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Figure 3.6: The trailing vortex system emanates from the quarter-chord line
of each panel (hollow circles), extending through the trailing edge of the wing
to infinity downstream. Arrows denote the direction of the normal velocity
at the panel three-quarter chord line. Solid circles denote panel edges.

For the numerical computation, the semi-infinite wing is represented by
a finite number of panels outboard of a semi-infinite panel. The baseline
configuration uses twenty chordwise panels and forty spanwise panels. The
semi-infinite panels have been applied beyond the fortieth spanwise panel
at each chordwise location to model the semi-infinite aspect of the problem.
Each of the semi-infinite panels has only one bound vortex and one trailing
vortex, i.e., half of a horseshoe vortex. The bound vortex extends to infinity
spanwise and the trailing vortex extends to infinity downstream as shown
on Figure 3.2(a). The boundary condition of finite circulation at infinity is
represented by requiring the values of bound circulation of each of the semi-
infinite panels to be equal to those of the panels next to them. The velocities
induced by the leading bound-vortex segment of the semi-infinite panel are

1 2
UBoo(Z,Y,2) = me
b
- v

@+ 8?2+ (y+0)?+22

1 z+ 3

= —— 0> ——F5 X
wBoo(xa Y, Z) dn (x + %)2 + 22
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y+b

1—
| V@ +8)?+ (y+0)? + 22

3.4.2 Results for a Rectangular Wing

We have applied the horseshoe-vortex panel model to the case of a rectangular
wing. A few of these results are of interest to show how the lift is distributed
over the surface of the wing, and how the vorticity is shed from the wing,
particularly how the flow rolls up around the wingtip to initiate the trailing
wingtip vortex. The results to follow are for the inner region near the wing-
tip. The bound circulation is defined as

Nz
L(Yy) =Y Tj,k=1.n, (3.21)

j=1

where n, and n, are the number of chordwise and spanwise panels repectively.
Y; is the spanwise location of the center point of panel j.

The trailing vorticity becomes small at a distance of the order of a chord
length from the wingtip. Consequently accurate computation of the trailing
vorticity requires a strong concentration of the horseshoe-vortex panels in
the region near the wingtip, as discussed above. Figure 3.7 shows the effect
of the number of panels used in the lifting surface code. Note that there is
little difference among the four results. The result with one chordwise panel
is fairly good and the result with ten chordwise panels is satisfactory. This
suggests that ten chordwise panels and twenty spanwise panels are sufficient
for the bound circulation computations.

Figure 3.8 shows the results of the lifting-surface computation for the
bound circulation on the wing. Note the excellent comparison of the nu-
merical results with the formula of Stewartson[1960]. In the region of sharp
drop-off of the bound circulation, the individual vortex filaments will roll
around each other to form the tip-vortex. In the region away from the tip,
where the spanwise variation of the bound circulation approaches zero, no
vorticity is shed to leading-order.

Figure 3.9 shows the circulation for each panel. Here we have used twenty
chordwise panels and forty spanwise panels. Note that the distribution of
circulation has its maximum value near the leading edge (i.e. at the one
quarter chord point of the most forward panel) and sharply decreases toward
zero away from the leading edge.
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Figure 3.7: Comparison of the computational results for different number of
panels used in the lifting surface code. Here ‘*’ represents the computational
results with one chordwise and twenty spanwise panels, the box represents
the computational results with four chordwise and twenty spanwise panels, ‘0’
represents the computational results with ten chordwise and twenty spanwise
panels and ‘+’ represents the computational results with twenty chordwise
and forty spanwise panels. The angle of attack is 12°.
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Figure 3.8: Circulation distribution for a semi-infinite rectangular wing. The
solid line is the analytical solution of Stewartson [1960] for the lifting line.
The circle is the computational results from the lifting-surface code with ten
chordwise and twenty spanwise panels. The angle of attack is 12°.
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Figure 3.9: Level curves of the circulation for each panel. The angle of attack
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Having obtained the spanwise distribution of the bound circulation, we
can calculate the positions of the shed vortices behind the wing. In a steady
inviscid-flow field, the trailing vortex lines are also streamlines. Therefore,
we can obtain the positions of vortex lines by solving the set of equations

dy v

b A .22

dr Uy (3.22)
dz _ w+ sinag (3.23)

dr Uso
where we have put v = U, = 1 corresponding to linearized theory. The
symbols v and w represent the y and z velocity components induced by the
wake. Here z is the independent variable measured from leading edge of the
wing. The vortices are initiated at the one-quarter chord position of each
panel at the beginning of the numerical integration for every iteration. For
the initial condition, z = 0 and y is the spanwise location of the trailing
vortex shed from the one-quarter chord of each panel. The trailing vortices
are forced to stay on the wing surface up to the trailing edge of the wing
but can be displaced in the y direction by the induced velocity. This set of
ordinary differential equations was solved numerically by the Adams-Moulton
method. Note that the velocity components were calculated for straight-line
trailing vortices in the first iteration.

In order to obtain the initial positions of the trailing vortices, we introduce
three parameters to describe the roll-up process. They are §, Z which are the
y and z components of the center of the tip-vortex core and 7 which defines
the core radius measured from the centroid. We define

n Ny
k=1 2521 L kYik
n n
Yk=1 2521 Djk
b= 2521 Tikzik
n .
k=1 2521 Lk
where n is the number of trailing vortices which are rolling over each other,

ng is the number of chordwise panels and I'; is the circulation of the panel
(4, k). The core radius r has been defined as

S b N T R R

n X ng

(3.24)

<2y
Il

(3.25)

w
i

(3.26)
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The iterative process was assumed to be convergent when T—"‘l:—;fﬂli is less

than 107 at each given value of . Here we have used one chordwise panel,
twenty spanwise panels on the wing surface and one hundred and twenty
nodes on each of the trailing vortices. The separation between the nodes on
each of the trailing vortices is 0.05. Beyond the last node, the trailing vortex
is represented by a semi-infinite, horizontal straight vortex line extending to
z = +o0o and parallel to the free-stream velocity.

Figure 3.10 presents the roll-up process for the semi-infinite fixed wing
at ap = 12° with a single chordwise panel after 350 iterations at which the
f"—e:ﬁfﬂu converges up to z = 3.25, with more iterations required for larger z.
Here the vortex lines emanating from each panel are shown on Figure 3.10
(a) and these suggest the behavior of the streamlines photographed by Head
[1982] (Figure 1.1). Note that the trailing vortices near the tip region roll
over and form a strong trailing vortex. However, in the region away from
the tip, the trailing vortices do not roll up in distances of the order shown
here. At z = 3.25, the tip-vortex has moved inboard which is also shown in
Figure 1.1. Figure 3.10 (b) shows the X-Z plot of the roll-over process of the
trailing vortices. Note that the trailing vortices leave the wing surface at the
trailing edge and move with the local velocity which is the sum of the free
stream velocity and the velocity induced by the wake. To satisfy the Kutta
condition, the flow is parallel to the free-stream velocity at infinite distance
downstream. Figure 3.11 shows a 3-D view of the roll-over process of the
trailing vortices.

The circulation of the tip-vortex is defined as the sum of the circulations
of all the rolled-up trailing vortices as shown on Figure 3.12, which shows the
Y-Z plot at z = 3.4 for the fixed wing at oy = 12°. At any given downstream
location, we plot a Y-Z view of the trailing vortices. From the Y-Z view plot,
we draw a box to count all the rolling-over trailing vortices. The left and
right edges of the box are determined by the left-most and the right-most
rolling-over trailing vortices and the lower edge is determined by the lowest
rolling-over trailing vortex. All the trailing vortices in this box are counted as
the rolling-over trailing vortices. The circulation of the tip-vortex is defined
as the sum of the trailing vortices in the box.

Figure 3.13 shows the growth of the circulation of the tip-vortex as a func-
tion of z (symbol “*’). At z = 6.0, the circulation of the tip-vortex is about
74.8 percent of the maximum bound circulation. Hence the tip-vortex does
not completely roll up at the trailing edge of the wing as some authors have
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Figure 3.10: Section view of the roll-up process of trailing vortices for the
fixed semi-infinite wing. The core radius converges at x = 3.25 after 350
iterations. A single chordwise panel is used. The angle of attack is 12°. (a)
X-Y plot. (b) X-Z plot. 58
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Figure 3.11: Three-dimensional view of the roll-over process of the trailing
vortices. The angle of attack is 12°. A single chordwise panel is used.
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Figure 3.12: The definition of the circulation of the tip-vortex.
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stated. Instead, the circulation of the tip-vortex develops downstream and
approaches a constant asymptotically. At an infinite distance downstream,
the circulation of the tip-vortex approaches the maximum bound circulation.
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Figure 3.13: The circulation of the tip-vortex at different . The maximum
bound circulation is 0.651 and the angle of attack is 12°. Here ‘*’ represents
the result for a single chordwise panel and ‘o’ represents the result for four
chordwise panels.

Figure 3.14 shows the downstream growth of the core radius 7 of the
tip-vortex measured from the centroid. The core radii 7 in Figure 3.14 were
calculated at each downstream location z at which an additional trailing
vortex enters into the rolling-over trailing vortices. Note that the core ra-
dius develops downstream and approaches a constant asymtotically which is
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similar to the development of the circulation of the tip-vortex.
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Figure 3.14: The core radius of the tip-vortex ¥ measured from the centroid
at different downstream location up to = 3.2. A single chordwise panel is
used.

Figure 3.15 (a) and (b) show the X-Y and X-Z views of the roll-up pro-
cess for the semi-infinite wing at oy = 12° with four chordwise and twenty
spanwise panels and the 3-D view is presented on Figure 3.16. The itera-

tive process was convergent after 490 iterations when %ﬂi is less than

10~* at z = 3.25. The downstream development of the circulation is shown
on Figure 3.13 by the circles. Note that the agreement with the result for
one chordwise panel (represented by **’) is fairly good. The trailing vortices
shed from different chordwise panels but from the same spanwise location
roll into the single strong tip-vortex at different downstream locations. The
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trailing vortices emanate from the panels closer to the leading edge of the
wing roll into the tip-vortex more quickly due to the velocity induced by
the wake. With more chordwise panels, the downstream development of the
circulation and core radius can be calculated more accurately. However, the
computation time has been greatly increased because the computation time
is approximately expressed by n2 xnZ xn2 where n, is the number of segments
on each trailing vortex.

Figure 3.17 (a) and (b) show the X-Y and X-Z plot of the roll-up process
for a semi-infinite wing at ap = 8° with a single chordwise panel. After 309
iterations, the core radius 7 converges at x = 3.25. At x = 3.25, the center of
the core has moved inboard. Figure 3.18 shows the 3-D view of the roll-over
process. Figure 3.19 shows the growth of the circulation of the tip-vortex
with z. At z = 6.0, the circulation of the tip-vortex is about 65.1 percent
of the maximum bound circulation, while for oy = 12°, this value is 74.8
percent. This difference might be attributed to the steeper gradient of the
bound circulation near the wingtip for a wing at higher angle of attack, as
shown on Figure 3.20.

3.4.3 Comparison with Experiment

In this section we compare the computational results with the experiments
of McAlister and Takahashi [1991]. The parameters of the experiment are
given in Table 3.1. Figure 3.21 shows the comparison of the bound circulation
of the experimental data with the computational data. The data are for a
fixed wing whose the aspect ratio is 6.6 and the angle of attack is 12°. The
computational and experimental results agree fairly well.

Wing | Chord | AR | AOA Re

1 304.8mm | 6.6 | 12.0 | 1.43 x10°
2 304.8mm | 9.6 | 12.0 | 1.44x10°
3 518.2mm | 6.6 | 12.0 | 1.49x10°
4 518.2mm | 6.6 | 12.0 | 1.98x10°

Table 3.1: The parameters for the wings investigated by McAlister and Taka-
hashi [1991].

Figure 3.22 presents the vertical velocity results of McAlister and Taka-
hashi [1991] for wings of different aspect ratios and different chords. Note
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Figure 3.15: Section view of the roll-up process of trailing vortices for the
fixed semi-infinite wing. (a) X-Y plot. (b) X-Z plot. Four chordwise panels
and twenty spanwise panels are used. The angle of attack is 12°.
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Figure 3.16: 3-D view of the rolling-over process for a semi-infinite wing at
angle of attack 12°. Four chordwise and twenty spanwise panels are used.
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Figure 3.17: Section view of the roll-up process of trailing vortices for the
fixed semi-infinite wing. The core radius converges at x = 3.25 after 309
iterations. A single chordwise panel is used. The angle of attack is 8°. (a)
X-Y plot. (b) X-Z plot. 66
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Figure 3.18: 3-D view of the roll-over process of the trailing vortices. The
angle of attack is 8°. A single chordwise panel is used.
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Figure 3.19: The circulation of the tip-vortex at different z. The maximum
bound circulation is 0.436 and the angle of attack is 8°. A single chordwise
panel is used.
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Figure 3.20: The comparison of the bound circulation for wings at different
angles of attack.
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Figure 3.21: The comparison of the experimental data of McAlister and Taka-
hashi [1991] and computations for the bound circulation. Here ‘*’ represents
the experimental data and solid line represents the computational results
from the horseshoe panel model where ten chordwise and twenty spanwise
panels are used. The angle of attack is 12°.
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Figure 3.22: The vertical velocity at = 1.1 chord behind the trailing edge
of different fixed wings from the data of McAlister and Takahashi [1991].
Here the ‘+’ represents wing 1, the ‘0’ represents wing 2, “*’ represents wing
3 and ‘x’ represents wing 4. The vertical velocity is plotted at z = 0; the
z—coordiate measures distance normal to the X — Y plane of Figure 3.2.
Y = 0 is the wing tip and Y > 0 is inboard.The parameters of wings are
shown in Table 3.1.
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that the influence of the aspect ratio and the chord on the vertical velocity
behind the wing is small. Therefore, to leading order, near the wing tip, the
flow is independent of aspect ratio and chord and hence the wing may be
viewed as being semi-infinite over the range of Y represented on the figure
even though each aspect ratio is less than 10. It also suggests that in the
range of the Reynolds number from 1.43 x 10° to 1.98 x 10°, the viscosity
has minor influence on the formation of the tip-vortex.

0.8 T T T T T T T
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0.2+

-0.8 1 1 ] 1 I 1 1
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 3.23: The vertical velocity at z = 1.1 chord behind the trailing edge
of the wing compared with the experimental data of McAlister and Taka-
hashi [1991], at z = 0 for Re = 1.44 x 10%(wing 2). Here ‘*’ represents the
experimental data and solid line represents the computational data. ¥ =0
is the wing tip and Y > 0 is inboard. A single chordwise panel is used.
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Figure 3.24: The vertical velocity at £ = 3.0 chord behind the trailing
edge of the wing compared with the experimental data of McAlister and
Takahashi[1991], at z = 0 for Re = 1.44 x 10° (wing 2). Here “*’ rep-
resents the experimental data and solid line represents the computational
data. Y = 0 is the wing tip and Y > 0 is inboard. A single chordwise panel
is used.

73




Figures 3.23 and 3.24 compare the numerical results for the vertical ve-
locity at z = 1.1 and z = 3.0 chords behind the trailing edge of the wing
with the experimental data of McAlister and Takahashi [1991] at the same
location for wing 2 of Table 3.1. Note that at z = 1.1 the comparison is
good except that the maximum of the velocity is underpredicted, as is the
dip outboard of the wingtip. At z = 3.0, the tip-vortex has moved further
inboard. The comparison is surprisingly good since the experiments were
performed at Reynolds numbers where the flow would be expected to be tur-
bulent, suggesting that viscosity and turbulence have only a minor influence
on the roll-up process.

3.5 Summary

The computation of the formation of a fixed wing tip-vortex is described
in this chapter. It is shown that to leading order, the flow near the tip
of a large aspect-ratio wing is equivalent to the flow past a semi-infinite
wing. The leading-order inner solution for the lifting-line integral equation
has an analytical solution given by Stewartson[1960]. A similar analysis was
performed for the lifting-surface theory using a horseshoe panel method. The
numerical results compare fairly well with experimental data, suggesting that
viscosity and turbulence have only a minor influence on the formation of the
fixed wing tip-vortex.

It is shown that the tip-vortex develops downstream and its circulation
approaches a constant asymptotically. At an infinite distance downstream,
the circulation of the tip-vortex approaches the maximum bound circulation.
Hence the tip-vortex does not roll up completely at the trailing edge of the
wing; instead, the core radius and the circulation develop asymptotically
downstream.
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Chapter 4

Asymptotics of Lifting-Line
and Lifting-Surface Theory for
a Rotary Wing without
Rotor-Wake Contraction

4.1 Introduction

In this chapter, the rotary wing computation is presented. Unlike the fixed
wing wake, it is observed that for a rotary wing, the shed vortices are driven
downward away from the rotor tip-path plane and form a more-or-less helical
rotor wake. Therefore, the lifting-line integral equation (3.3) can not be
applied to the rotary wing directly since the influence of the helical rotor wake
must be considered. In this chaper, Burggraf’s [1999] lifting-line theory for
rotors is applied first to obtain the influence of the helical rotor wake on the
distribution of the bound circulation in the outer region away from the rotor-
tip. Then the leading order lifting-line integral equation is established in the
tip region. In the tip region, because the curvature of the most recently
shed trailing vorticies is much greater than the length scale of the inner
region (the chord c¢), the most recently shed trailing vortices can be viewed
as straight vortex lines. However, unlike the fixed wing case, the trailing
vortices are also driven downward away from the rotor tip-path plane and
form a more-or-less helical wake and thus the lifting-line integral equation for
a fixed wing can be applied in the tip region with a modification accounting
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for the helical wake effect. It is shown that near the rotor-tip, to leading
order, an analytical solution for the bound circulation can by obtained by
a simple modification of the Stewartson[1960] solution. Next the lifting-
surface method is applied and its results compare well with the modified
Stewartson [1960] solutions. The roll-up process for the trailing vortices
is also presented. We calculate the induced vertical velocity and compare
the numerical result with the experimental data of McAlister et al[1995].
The uniformly valid solution for the bound circulation is obtained by using
“multiplicative composition”.

4.2 Rotor Aerodynamics: Downwash and Vor-
ticity in the Cylindrical Slipstream of a
Hovering Rotor

Burggraf [1999] has developed a theory for the interaction between an as-
sumed cylindrical slipstream and the bound circulation for an n-bladed rotor
(see Appendix B for more details). The concepts of Prandtl’s lifting-line
theory were applied to formulate an integro-differential equation governing
the aerodynamics of a rotor operating in hover (static thrust). In Prandtl’s
theory, the high aspect-ratio wing is represented by a line vortex (the lifting
line) and the aerodynamic properties of each spanwise section are approxi-
mated locally by the two-dimensional characteristics from linearized airfoil
theory. However, the free stream of the local section is replaced by the rela-
tive wind, i.e., the effective angle of attack is the geometric angle of attack
reduced by the local downwash induced by the trailing vortices.

Corresponding to the variation of bound circulation, vortices are shed all
across the rotor, forming an approximately cylindrical slipstream filled with
concentric helical vortices. These discrete helical vortices are approximated
by uniform cylindrical sheets of vorticity. For purposes of computing the
downwash, these elemental vortex cylinders may be viewed as composed of
vortex rings, whose strength is approximately constant on each cylinder. The
axial component of the helical vortices, that is, the component of the circu-
lation oriented in a direction normal to the tip-path plane may be ignored
for present purpose, since it does not contribute to the downwash.

A cylindrical coordinate system (r, 8, z) is convenient, where r is the radial
coordinate, 6 the azimuthal coordinate, z the axial coordinate (see Figure
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4.1). These elemental vortex cylinders, formed from the inboard vortex sheet,
are superposed with the vortex cylinder generated by the tip-vortex to form
the complete rotor slipstream.
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Figure 4.1: Vortex cylinder coordinate system.

For a single cylinder of vortex rings of circulation 7y per unit of axial
length along the cylinder, it has been shown previously by Radcliff et al.
[2000] that the axial velocity induced by the vortex ring-cylinder using the




Biot-Savart Law is given by

v,/2 for r<o!
v(r) =4 7,/4 for r=1' (4.1)
0 for r>7

Since the downwash at radius 7 in the rotor plane is induced only by those
cylinders of larger radius, the net downwash is given by

a
0.lr) = 5 [ i) '+ 5 (42)
T
where the subscripts 7 and t refer to the inboard vortex sheet and to the tip
vortex, respectively. It is shown in Appendix A that the downwash satisifes
an integro-differential equation which depends on a single parameter

A= 208
ne

where a is the blade radius, o is the geometric attack angle and n is the

number of blades. As described by Burggraf [1999], the form of this integro-

defferential equation permits a simple analytical solution, unlike the appar-

ently simpler case of the fixed wing. For the case of a rectangular blade the

induced downwash has the form

Uy, 1
W(R) = =222 = —(V1 -1 .
(R) Qacq 4)\( +8AR — 1) (4.3)
where W (R) is the nondimensional downwash and R is the nondimensional
radius which is defined as R = L. § is the rotor rotating speed.
The blade circulation is given by

F*
= Qae = "0 [R - W(R)] (4.4)
and the effective angle of attack is
vztip
e, = O — W (45)
_ W(R)
= O [1 — T] (46)

where the leading term represents the effects of blade rotation and the second
term accounts for the reduction due to downwash induced by the helical
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rotor wake. This outer solution is not valid near the rotor tip and proper
treatment of this anomoly requires consideration of the inner expansion which
is discussed in the next section.

To study the behavior of the induced downwash W (R) as a function of
A, we expand W(R) as A — 0 and A — oo. The series expansion for W(R)
as A —01is

W(R) = R—2\R? + 8\’R® — ... (4.7)
and as A — oo is 1
W(R) = (5)5—i+ (4.8)
—\2) 4\ '

Equation (4.7) shows as A goes to 0, W(R) has a linear spanwise distribution.
Equation (4.8) shows W(R) vanishes as A goes to infinity and thus in this
case, the rotary wing is equivalent to a semi-infinite wing.

Figure 4.2 shows the induced downwash in the plane of the rotor given by
the analytical solution of Burggraf [1999] and the corresponding distribution
of the bound circulation is shown on Figure 4.3. It is seen that the induced
downwash increases monotonically, from zero at the hub to the maximum
value at the tip, the latter value depending on the parameter A\. The cir-
culation vanishes like R? at the hub, and also increases monotonically with
radius. As mentioned above, these outer solutions are not valid in the region
near the rotor-tip and thus an inner solution is necessary, which is discussed
subsequently.

4.3 The Solution for a Rotary Wing Near the
Rotor Tip

4.3.1 The Inner Solution For the Lifting-Line Integral
Equation

In this section, we consider the flow in the tip region as shown on Figure 1.7.
In the tip region, the most recently shed trailing vortices can be approximated
as straight lines and their influence is represented by the integral term in
equation (3.3). However, different from the fixed-wing case, the previously
shed vortices do not remain in the rotor tip-path plane; instead, they are
driven downward away from the rotor tip-path plane and form the helical
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rotor wake. Therefore, the influence of the helical rotor wake needs to be
considered when equation (3.3) is applied in the rotor tip region.

First, we replace Uy and y* in equation (3.3) with Qr and r respectively,
nondimensionlize equation (3.3) by writing

" Qac

and r
R=-

a
Integrating Ry from the rotor hub (R, = 0) to the tip (Ro = 1), we have

A7! 1 dl' dRy
47 Jo dRyR — Ry

1
I'(R) = §mC’(R) <a0R — (4.9)
where C(R) has the same definition as C(y) in the fixed wing case. For a

rectangular rotor blade, C(R) = 1.
To focus on the tip region, we make the transformation

Y = (1— R)A?

where (3 is a constant. Substituting Y into equation (4.9), we find to balance
both sides, B = 1. If we assume that I' remains O(1) near the rotor-tip, and
the chord finite at the wing-tip, then I' may be expanded as

I'= Fl + A_lrg + ...

and substituting into equation (4.9), we find to leading-order, the lifting-line
integral equation for a semi-infinite wing is
m 1 o dly dY,

V)= Plag— — [ &1L
V) =3w-f Wmy-v

(4.10)

To include the effect of the helical rotor wake in the tip region, a modifi-
cation must be made to equation (4.10)

m[ Loedy d¥% o wov) (4.11)

V) =3le-% ) wy-v

where W,(Y) is the downwash induced by the helical rotor wake in the inner
region and is defined just below.

82




Expanding the outer solution for the downwash in the rotor-tip path plane
W (R) in equation (4.3) with the inner variable Y = A(1 — R) and substitute
it into equation (4.11), we have

-1 2A—2y2
W,(Y) 1{\/17‘5[1—4“1 y 8

Sy 1+8)  (1L+8))2 +O(A_3)]—1} (412)

To leading order

V14 8A 1
~Y s 4.1
Substituting W,(Y’) into equation (4.11), we have
m vV1+8h 1 1 [edly, dY,

[1(Y) = —-foo(1 - (4.14)

5 o D wh wy_v

Comparing equation (4.14) with equation (3.6), it is easy to see that to
leading-order, the only difference is a parameter 1 — 3@ + 45~ Therefore,
in the tip region, to leading-order, the rotary wing is similar to the fixed wing
and thus equation (4.14) has an analytical solution similar to Stewartson’s

[1960].
We represent the A-grouping by the symbol D as
V148X 1
D=1-"F—+ (4.15)
Hence equation (4.14) becomes
. m 1 reodlly dY
) = Fleb- ) v -y,
m 1 o dl'y dYy
= —aoD[1 —
gDl =Dl v -1,

Define the integral term in the equation above as f(£) where £ = %Y, we
have

Ly(Y) = TaoD[L - £(£)] (4.16)
and thus JT
& = 3Dl (4.17)
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f(€) can be expressed as

1 o dl', dYy
drogD Jo dYyY — Y
1 o dl'y d&
drogD Jo d& Y — Yo

€ =

Substituting equation (4.17) into equation above, the same expression as
Stewartson’s [1960] is obtained.

1o f'(&0)déo

£(€) e
1 o e % L [* logode
= Arame

Finally, to leading order near the rotor tip, we have
m
Oy(¥) = ZaoD[1 - f(©)] (418)

We call equation (4.18) the modified Stewartson’s solution since it is
identical to the analytical solution aside from the parameter D.

Figure 4.4 shows the leading-order inner solution for the bound circulation
as a function of A. Note that these inner solutions are matched with the outer
solution shown on Figure 4.3.

4.3.2 The Lifting Surface

In this section we consider the lifting surface analog of lifting-line theory
for the rotary wing. We apply the lifting-surface equation for a finite fixed
wing (equation 3.9) to the rotor-tip. First, y is replaced by R and the outer
integral is from the rotor hub (Ry = 0) to the tip (Ro = 1). Morever, in a
tip region, two more modifications must be made: transform outer variables
z and y into inner variables near the rotor-tip as:

X=zA

Y =(1-R)A
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Figure 4.4: Leading order solution for the bound circulation on a rotary wing
as a function of A = 22,
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Also W,(Y) appears in the lifting-surface equation. Thus equation (3.9)
becomes

/ /C“P ")’y )& X()) + ")‘X(Y 3/0) %
4 [(X = Xo)2 + (¥ - Yo)7)?
dXoClYo — Qg + 010W0(Y) =0 . (419)

Note that equation 4.19 is valid only in the tip region and hence the
Jeading-order term of the rotor speed in the tip region is 1, nondimensionl-
ized by the rotor-tip speed. The analytical solution to this two-dimensional
integral equation is unknown and so we solve it numerically. The same horse-
shoe panel method as was used for the fixed wing is applied to the rotary
wing near the rotor-tip.

Figure 4.5 shows the numerical results with different number of panels in
the lifting surface code. Note that the comparison is good. This suggests
that ten chordwise panels and twenty spanwise panels are sufficient for the
computations.

Figure 4.6 shows the leading order-inner solutions for the bound circu-
lation near the rotor-tip for the lifting surface code and the modified Stew-
artson’s equation (4.18). Note the excellent comparison of the lifting-surface
results with the modified Stewartson’s equation (4.18). In the region of
sharp drop-off of the bound circulation, the individual vortex filaments will
roll around each other to form the rotor tip-vortex. In the region away from
the tip, where the circulation approaches a constant, no vorticity is shed to
leading order.

4.3.3 The Formation of the Rotor Tip-vortex

Having obtained the spanwise distribution of the bound circulation near the
tip-region, we can calculate the positions of the shed vortices behind the
rotor. In a steady inviscid-flow field, the trailing vortex lines are also stream-
lines. Therefore, we can obtain the positions of vortex lines near the rotor
tip by solving the set of equations

dy v

= = — 4.20

dr Uy ( )
dz w+ sinag
—_—=— 4.21
dx Us ( )
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Figure 4.5: Comparison of the computational results with different number
of panels in the lifting surface code. Here ‘o’ represents the computational
results with ten chordwise and twenty spanwise panels and ‘+’ represents the
computational results with twenty chordwise and forty spanwise panels.
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where U, has been nondimensionlized by 2a and equals 1 in the tip region,
corresponding to linearized theory. The symbols v and w are the y and z
velocity components induced by the wake. Here x is the independent variable
measured from the leading edge of the blade. The vortices are initiated at the
one-quarter chord position of each panel at the beginning of the numerical
integration for every iteration. For the initial condition, z = 0 and y is
the spanwise location of the trailing vortex shed from the one-quarter chord
of each panel. For each trailng vortex, z = 0 all along the wing surface,
while they can be bent along y direction by the induced velocity. This set of
ordinary differential equations was solved numerically by the Adams-Moulton
method. Note that the velocity components were calculated for straight-line
trailing vortices in the first iteration.

In order to obtain the steady state positions of trailing vortices, we use
the centroid of the tip-vortex core § and Z and the core radius measured from
the centroid: 7. The definitions of 7, Z and 7 are the same as for the fixed
wing. The iterative process was assumed to be convergent when f—"e—‘;ol‘;’:di is
less than 10~ at each value of z. Here we have used one chordwise panel,
twenty spanwise panels on the wing surface and one hundred and twenty
nodes on each of the trailing vortices. The separation between the nodes on
each of the trailing vortices is 0.05. Beyond the last node, the trailing vortex
is represented by a semi-infinite, straight vortex line extending to z = 400
and parallel to the free-stream velocity.

R 1.14m
QR 132 m/s
T 2
Chord 0.191 m
Angle of Attack 8°
A 0.42

Table 4.1: The parameters for the rotor investigated by McAlister et al [1995].

Figure 4.7 presents the calculated results for the bound circulation in the
inner region for the two-bladed rotor of McAlister et al[1995] (g = 8°). The
parameters of the rotor are given in Table 4.1. Figure 4.8 (a) and (b) presents
the X-Y and X-Z views of the roll-up process for the rotor after 110 iterations
at which the F"%’f;jﬂ‘i converges up to r = 3.25, with more iterations required
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Figure 4.7: The comparison of inner solutions of the bound circulation for
the rotor given in Table 4.1 with the rotor at ap = 12° and other parameters
unchanged.
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for larger x.
Figure 4.9 (a) and (b) presents the X-Y and X-Z views of the roll-up

process for the rotor after 252 iterations at which the ™ee=reld converges up
to z = 30.0. The roll-up process of the trailing vortices for the same rotor
has also been investigated for convergence at z = 10.0 and =z = 20.0. As
we go further downstream along x, more trailing vortices were found to roll-
over thereby increasing the maximum tip-circulation. For the convergence
at z = 30.0, the non-rolled-up trailing vortices were found to contribute very
little in increasing the strength of the tip-vortex. Hence, their non-inclusion
in the roll-up process is assumed to be of little importance in terms of the
strength of the tip-vortex. We note that there is good agreement between
the X-Z views in figure 4.8 and figure 4.9 upto the position z = 3.25. Also
from figure 4.9 (b) we see that with increasing downstream distance z the
tip-vortex moves further inboard.

Note that the trailing vortices near the tip region roll over and form a
strong trailing vortex. However, in the region away from the tip, the trailing
vortices do not roll up in distances of the order shown here. The 3-D view
of the roll-up process is presented on Figure 4.10.

Figure 4.11 shows the comparison of the growth of the circulation of
the tip-vortex as a function of convergence achieved at different z. At z =
6.0, the circulation of the tip-vortex is about 54.9 percent of the maximum
bound circulation. Hence the rotor tip-vortex does not roll up completely
at the trailing edge of the rotor blade as assumed in many wake models.
Instead, it develops downstream and its circulation approaches a constant
asymptotically as is seen when the convergence is achieved at z = 30.0,
where the circulation of the tip-vortex is about 78.6 percent of the maximum
bound circulation. The circulation of the tip-vortex approaches the maximum
bound circulation at an infinite distance downsteam.

Figure 4.12 shows the downstream development of the core radius 7 of the
tip-vortex measured from the centroid for two different cases; one in which-
convergence is achieved until x = 3.25 and the other in which convergence
is achieved until z = 30.0. The core radii 7 in the Figure 4.12 were calcu-
lated at each downstream location x at which an additional trailing vortex
enters the rolling-over trailing vortices. Note that the 7 develops downstream
and approaches a constant asymptotically. Comparing with Figure 3.14, the
core radius of the rotor tip-vortex develops more slowly than the fixed-wing
tip-vortex.

Figure 4.13 (a) and (b) show the X-Y and X-Z views of the roll-up process
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Figure 4.8: Section view of the roll-up process of trailing vortices for the
rotor. The core radius converges at z = 3.25 after 110 iterations. A single
chordwise panel is used. The angle of attack is 8°.
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Figure 4.9: Section view of the roll-up process of trailing vortices for the
rotor. The core radius converges at = 30.0 after 252 iterations. A single
chordwise panel is used. The angle of attack is 8°.
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Figure 4.10: 3-D view of the roll-over process of the trailing vortices. The
angle of attack is 8° and the core radius is converged until z = 30.0. A single
chordwise panel is used.
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Figure 4.11: The comparison of the circulation of the tip-vortex for conver-
gence achieved at different z. The maximum bound circulation is 0.153 and
the angle of attack is 8°. A single chordwise panel is used.
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Figure 4.12: Comparison of the core radius of the tip-vortex 7 measured from
the centroid at different downstream location up to z = 3.25 and z = 30.0.
A single chordwise panel is used.
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for a rotor with ag = 12° and its 3-D view is shown on Figure 4.14. A single
chordwise panel was used in this case. The corresponding bound circulation
in the inner region is shown on Figure 4.7 (ag = 12°). After 121 iterations,
the core radius 7 converges at x = 3.25. At x = 3.25, the center of the
core has moved inboard. The symbol "*’ in Figure 4.15 shows the growth of
the circulation of the tip-vortex with z. At x = 6.0, the circulation of the
tip-vortex is about 60.1 percent of the maximum bound circulation, while
for the rotor at oy = 8°, the circulation is only 54.9 percent. The reason for
such difference is addressed below.

Figure 4.16 (a) and (b) show the X-Y and X-Z views of the roll-up process
for the rotary wing at ag = 12° with four chordwise and twenty spanwise pan-

els. The iterative process was convergent after 132 iterations when fw—;—fﬂ‘i
[}

is less than 10~* up to z = 3.25. Note that trailing vortices shed from differ-
ent chordwise panels but from the same spanwise location roll into the single
strong tip-vortex at different downstream locations. The trailing vortices
emanate from the panels more close to the leading edge of the rotor blade
roll into the tip-vortex more quickly. The 3-D view is shown on Figure 4.17.
The downstream development of the circulation of the tip-vortex is presented
by the circles in Figure 4.15. Note that they agree fairly well with the result
for one chordwise panel (represented by "*’).

Wing | Angle of Attack | z; %‘;—d Zo lef:*:—“—d
Fixed1 8° 3.25 | 0.546 | 6.0 | 0.651
Fixed2 12° 3.25 | 0.597 | 6.0 0.748
Rotaryl 8° 3.25) 0.436 | 6.0 0.549
Rotary2 12° 3.25 | 0.492 (6.0 0.601

Table 4.2: The circulation of the tip-vortex for both fixed and rotary wings.

Table 4.2 shows the comparison of the circulations of tip-vortex for dif-
ferent fixed and rotary wings. At the same angle of attack and downstream
location, the tip-vortex shed from a fixed wing is stronger than that for a ro-
tary wing (Fixed wingl and Rotary wingl, Fixed wing2 and Rotary wing2);
that is, the fixed wing tip-vortex develops more quickly than the rotor tip-
vortex. Morever, the tip-vortex shed by the wing at higher angle of attack
also develops more quickly than that shed by the wing at lower angle of at-
tack. Such different downstream development is attributed to the different
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Figure 4.13: Section view of the roll-up process of trailing vortices for the
fixed semi-infinite wing. The core radius converges at x = 3.25 after 121
iterations. A single chordwise panel is used. The angle of attack is 12°.
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Wing surface

Roll-up vortices Weak inboard vortex
(Tip-vortex)

Figure 4.14: 3-D view of the roll-over process of the trailing vortices. The
angle of attack is 12°. A single chordwise panel is used.
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Figure 4.15: The circulation of the tip-vortex at different x. The maximum

bound circulation is 0.274 and the angle of attack is 12°.

1%

represents

the result for a single chordwise panel and 'o’ represents the result for four
chordwise panels.
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(b)

Figure 4.16: Section view of the roll-up process of trailing vortices for a
rotary wing. (a) X-Y plot. (b) X-Z plot. Four chordwise panels and twenty
spanwise panels are used. The angle of attack is 12°.
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Wing surface

Roll-up Vortices
(Tlp-vortex) Weak inboard vortex

Figure 4.17: 3-D view of the roll-over process of the trailing vortices. The
angle of attack is 12°. A single chordwise panel is used.
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spanwise variation of the bound circulation near the tip region: a steeper
spanwise gradient produces stronger tip vortices and hence a quicker devel-
opment of the tip-vortex.

Figures 4.18 and 4.19 compare the numerical results for the vertical ve-
locity with the experimental data of McAlister et al.[1995] at a position 0.5
and 3 chord lengths behind the trailing edge of the rotor. At z = 1.5¢,
although the maximum of the velocity is underpredicted, the comparison is
surprisingly good since the experiments were performed at Reynolds numbers
where the flow would be expected to be turbulent, suggesting that viscosity
and turbulence have only a minor influence on the roll-up process. Note the
lack of a dip outboard of the tip for the rotary wing, which was present for
the fixed wing (see Figure 3.23). At z = 4c, the computed result shows the
tip-vortex has moved more inboard while such movement is not shown by
the experimental data.

In the above velocity profile comparisons we considered a rotor blade
with a low aspect ratio of 6. But in assuming the rotor blade to be semi-
infinite we ignored some higher-order terms in the analytical expression for
the downwash induced by the helical rotor wake in the inner region W,(Y').
However, the velocity field around and across the tip-vortex of a single-bladed
rotor of aspect ratio 6 was computed after inducting the higher order terms
in the expression for downwash. These velocity profiles compare much better
with the experiments conducted by McAlister [2001] and the results will be
published(Kini et al [2002]).

Figure 4.20 shows the calculated results for the bound circulation in the
inner region for two-bladed rotors at 8° angle of attack with different aspect
ratios. As the aspect ratio increases, the bound circulations come close to
each other. Figure 4.21 presents the corresponding induced vertical velocities
behind these rotors. Note that the induced vertical velocities for A = 30, 40
and 50 are very similar and this suggests that for A = 30, the flow behind
the rotor is relatively independent of the aspect ratio.

4.4 The Uniformly-Valid Solution for the Bound
Circulation for the Rotary Wing

In this section, the uniformly-valid solution for the bound circulation for a
rotor is given by using the method of matched aymptotic expansion. We
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Figure 4.18: The vertical velocity at z = 1.5 chord behind the trailing edge of
the rotor compared with the experimental data at z = 0. Here ¥’ represents
the experimental data and solid line represents the computational data. Y =
0 is the rotor tip and Y > 0 is inboard. A single chordwise panel is used.
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Figure 4.19: The vertical velocity at z = 4.0 chord behind the trailing edge of
the rotor compared with the experimental data at z = 0. Here ’*’ represents
the experimental data and solid line represents the computational data. ¥ =
0 is the rotor tip and Y > 0 is inboard. A single chordwise panel is used.
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Figure 4.20: The comparison of inner solutions for the bound circulation for
two-bladed rotors with different aspect ratios. The angle of attack is 8°.

106




-0.1 0 0.1 0.2 0.3 0.4

0-4 B 1 LML I 1 1 1 1 l T 1T 177 I ) 1 { 1 I T 1 l_l 1 LA I i 0-4
- A=20 — — -
03 A=30 —— -o03
i _ A=40 +++ ]
- ) A=50 -+ —]
021 X . 0.2
Lt .
= 01 \ Jo.1
5 [ \ .
T | | :
or \ o
01 SERREEY 0.4
02 :_ —: -0.2
I BTN ETEE T AN AT B AN AR R

-0.1 0 0.1 0.2 0.3 0.4
Y
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use “mutiplicative composition”, as defined by Van Dyke[1975], to form the
uniformly-valid solution for the bound circulation

Finner Fau er
_ Linner X 2 outer (4.22)

r uniform Fcp
where Tjner is the inner solution of the bound circulation (near the tip region)
given by the modified Stewartson[1960] or the lifting surface code, I'gyser is
the outer solution which is given by equation (4.4) and T, is the common
part which is defined as the bound circulation as the outer variable R — 1
or the inner variable Y — oo.

0.35 R 1 1 T ] 0-|25 ] 1 1] 1 Ois 1 I 1 1 0.;75 | 1 1] 1 :‘l 0.35
0.3 o3
o ]
@© ]
G025 —0.25
-~ ]
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Figure 4.22: The uniformly-valid solutions without wake contraction for dif-
ferent \. o = 8°.

Figlire 4.22 shows the resulting uniformly-valid solution without slip-
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stream contraction. When the rotor-wake contraction effects are considered,
the downwash induced at the tip-path plane by the contracting slipstream
vortices will change and the bound circulation will change correspondingly.
In order to dertermine the effect of contraction on the bound circulation, two
types of wake models are used to represent the slipstream contraction, which
will be discussed in the next chapter.

4.5 Summary

In this chapter, the rotary wing computation is performed. The most impor-
tant result of this work is that by applying the classical inviscid lifing-line
and lifting-surface methods, the formation of the tip-vortex including the
core radius and the circulation can be predicted quantitatively as a function
of the angle of attack, the aspect ratio and the number of blades.

It is shown that near the rotor-tip, to leading order, the flow past a rotary
wing is equivalent to the flow over a semi-infinite wing and it has an analytical
solution given by the modified Stewartson[1960] equation (4.18). The similar
lifting-surface method which was developed for the fixed wing is extended
to the rotary wing and its numerical results compare well with the modified
Stewartson[1960] equation (4.18).

The roll-up process for the trailing vortices is presented. It is shown
that the rotor tip-vortex does not roll up completely at the trailing edge of
the rotor blade as assumed by many rotor wake models; instead, the core
radius and the circulation develop downstream asymptotically. Compared
with the fixed wing at the same angle of attack, the downstream development
of the rotor tip-vortex is much slower than that for the fixed wing tip-vortex.
The computational results for the induced vertical velocity compare well
with McAlister et al. [1995]. The uniformly valid solution for the bound
circulation of a rotor without rotor-wake contraction is established by the
“multiplicative composition” (Van Dyke 1975).

It is observed that the rotor wake is not a perfect helix as assumed in
Burggraf’s lifting-line theory [1999]. In the next chapter, two types of rotor
wake models (vortex cylinder model and discrete vortex ring model) are
used to consider the influence of the rotor wake contraction on the bound
circulation in the outer region away from the rotor-tip.
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Chapter 5

Rotor-Wake Contraction
Effects on the Formation of the
Tip-Vortex

5.1 Introduction

Experiments show that the tip vortices appear to be fully contracted within
about one rotor radius below the tip-path plane (Landgrebe [1972], Gray
[1991] and Leishman et al. [1995]). Leishman et al. [1995] reported that
the vertical slipstream velocity in the wake boundary is roughly doubled in
magnitude as the wake contracted which is consistent with the the simple
one- dimensional actuator disk theory (Johnson [1980]). Outside the wake
boundary, the flow is found to be relatively quiescent. The axial and radial
displacement (Z;;, and ry;,) of the tip-vortex with respect to the rotor position
is given empirically by Landgrebe [1972] as:

Ztip ki1¢w, 0< ¢y < 2T7T
R~ R 2 n 5.1
g { (28] pmtp) + halbo = B), B0 2 % (5.1)
and y
D= A4 (1- A)e N0 52)

R

where k; and k; are constants which are related to the blade loading and
¢, is the phase angle of the rotor blade. A is a constant and for the stable
near-wake region A = 0.78 which means the asymptotic contraction is about
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78 percent of the rotor radius. X is defined as
A= 0.145 + 27Cr (5.3)

where C7 is the thrust coeflicient.

Because of the rotor wake contraction, the induced downwash at the
rotor tip-path plane by the contracting slipstream vortices will change and
the bound circulation will change correspondingly. In order to determine the
effect of the contraction on the bound circulation, we have used two types
of wake models (vortex cylinder and discrete vortex ring model) to represent
the slipstream contraction, discussed below.

5.2 The Vortex-Cylinder Model

In this section, we use a vortex cylinder model to consider the influence of
the rotor wake contraction on the bound circulation. The slipstream of the
tip-vortex can be obtained based on Burggraf’s [1999] theory. In Burggraf’s
[1999] theory, the rotor wake is represented by uniformly distributed semi-
infinite vortex cylinders. According to this model, the inner semi-infinite
vortex cylinders have no influence on the outer-most semi-infinite vortex
cylinder(i.e. the tip-vortex). Therefore, the velocity components induced
at the slipstream boundary by the vorticity distributed along the outermost
semi-infinite vortex cylinder are determined. The streamline passing through
the edge of the rotor disk is evaluated by numerical integration, using the
velocity components evaluated on the original cylinder surface as a first ap-
proximation.

By definition, the slope of a streamline is given in terms of the velocity
components as

dr v

dz v,
where v, and v, are velocity components induced by the outer-most semi-
infinite vortex cylinder at the evaluation point. By solving these streamline
equations, the slipstream boundary of the tip-vortex can be represented as
the streamline passing through the edge of the rotor disk.

First we consider the rotor wake-contraction effect on the bound circu-
lation in the outer region. In order to determine the effect of rotor-wake
contraction on the bound circulation, we have used a simple model to rep-
resent the slipstream contraction. In this model, the slipstream has been

(5.4)
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represented by a discrete sequence of vortex cylinders of finite length and
different radii. The wake configuration is defined using a contraction coef-
ficient € = —i— with € < 1, where a;;; and a; (i = 1,.., N) are the radii of
two downstream successive finite vortex cylinders respectlvely In this case,
the lifting-line model was solved by a numerical scheme, using the elliptic-
integral formulas given by Radcliff et al. [2000] to evaluate the downwash
induced by each vortex cylinder. Figure 5.1 shows the structure of this model.

r

a2

e — N bk _—" N

A B c

Figure 5.1: The vortex cylinder model for the rotor wake contraction at a
single downstream location.

Note that we use only three vortex cylinders to illustrate the model at a sin-
gle contraction location, though thirty cylinders were used in the numerical
calculation.

The upper vortex cylinder has a radius of a; and length z, below the
rotor-tip path plane, the lower vortex cylinder has a radius of a; and extends
to infinity downstream. The contraction coefficient € = 2. The radial and
vertical induced velocities by a semi-infinite vortex cylinder are given by
Radcliff et al.[2000]. The axial induced velocity at the tip-path plane (r,0)
by the three semi-infinite vortex cylinders (A, B and C) is given by

¥ ( (1) 76 (") 76 (r')
V,(r,0) = au ——=[1 + sign(r' —7)] — GTC 4f( )CC (6.5)

' is the radius of the vortex cylinder A, f(¢) is a function accounting for the
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variation of v¢(r’) when ' changes from a; to a;

_ b (r', 2w)
f(f) - ’UZ(T,, O) (56)

where for convenience v, (1, z,,) and v, (', 0) are both approximated by v, (7', 0)
and thus f(¢) = e. The quantities Cg and C¢ in Equation (5.5) are defined
as

2 gﬂ L -1
Cp = 1+sign(r'— )+— r [K (kp)— , (o}, k)] (5.7)
z— zw ( d + 1)2 + 1
and
—w 5 -1
Ce = 1+sign(er'—r)+ \/ er )Z[K(kc)—%ﬁn(af,kc)] (5.8)
er’ er +1 er’

where K is the complete elliptic integral of the first kind and II is the complete

elliptic integral of the third kind.
Now we integrate with respect to 7’ from the root to the tip,

v,(r,0) = /()“[Zgglﬂ[l + sign(r' — )] — 7Birl)C'B + Z(}((i)) Ccldr’  (5.9)

where a is the radius of the rotor. The term [; 1"—’15’—’1[1 + sign(r’ — r)]dr’ has
been derived by Burggraf[1999]. As an approximation, we use Burggraf’s
[1999] result (see Appendix B) to calculate term Cp and term Cc.

Since 02 L d
v,
79(T) = 2’UZ(’I‘ 0)[ 0~ 5 dr ] (510)
Non-dimensionlizing equation above where R = % and W(R) = gk,
Qc dW (R)

The velocity induced by vortex cylinder B and C is defined as v,, and

v,.(r, 0) =/Oa [—WA(:I) 4f )C’]d’ (5.12)
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Non-dimensionlizing equation (5.12), we have

dW (R Ce

W, :—/ 1- Cp — 1R 5.13
From Appendix A, equation (B.11)
W(R) = 4&[\/1 TR 1] (5.14)
so that )
dW(R') _ 1 (5.15)
dR' V14 8AR ’
Non-dimensionlizing Cg and C¢, we have Cp
Cp =1+ sign(R' — & K (k) — L1102, k)
B= sign b) — 7110y, Kb
\/52—15—2WL+ (& +1)2 gl
(5.16)
where AR
k2 = R 5.17
TR By 517
4£
0 = TRy (5.18)
( +1)?
and C¢
2 Z;zgm '11% -1 2
Cc = 1+sign(eR — R) +- < (K (k) — <% 1H(ac, ke))
2ol (& 1 aw
(5.19)
where 4B
k Y 24 (5.20)
Z(elg‘;; + (62’ + 1)
4R
ol = — (5.21)
(& +1)?

The total downwash in the rotor tip-path plane induced by these three
vortex cylinders is W(R) + W, (R) where W,(R) is the correction term due
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to the rotor wake contraction. Therefore, the resulting bound circulation is

I'(R)
T

= R—[W(R)+W(R)]

V1+ 8AR — 1) + W, (R)]

= R-Igl
We can add more semi-infinite vortex cylinders to this model only by modi-
fying W,(R).

Burggraf[1999] has analytically derived the rotor slipstream contraction
in hovering flight condition based on the velocity induced by the tip-vortex
cylinder alone. z, and e for each of our interior vortex cylinders are based
on Burggraf[1999] results for the tip-vortex cylinder.

Now we consider the downwash induced by the rotor-wake contraction
W,(R) in the inner region where R = 1. Setting R = 1 into equation (5.13),
we found W,(1) is a function of A\. Table 5.1 shows the comparison between
W (1) and W,(1). Note that W,(1) is much less than W (1) and thus W,(1)
is not included in the inner solution in this work.

A wa) [ W) | s
0.07 | 0.889 | 0.070 | 0.080
0.7 10.560 | 0.035 | 0.063

7 0.234 | 0.012 | 0.05

Table 5.1: The comparison of W(1) and W,(1).

Figure 5.2 compares the resulting uniformly-valid solution without slip-
stream contraction with the solution accounting for the rotor-wake contrac-
tion. Note that as ) increases, the effect of slipstream contraction is reduced.

Figure 5.3 compares our theoretical results with the experimental data
of Caradonna and Tung [1981]. Note that the theoretical values for no con-
traction are evaluated from purely analytical formulas. The comparison is
reasonably good in each case, though the peak value is underpredicted for
the smallest value of angle of attack (a = 5°). Note that for the large angle of
attack (a = 12°), the wake contraction model (represented by the solid lines)
produces better results than the model without wake contraction (presented
by the dotted lines) except near the tip.
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Figure 5.2: The comparison of the uniformly-valid solutions without wake
contraction with the solutions with wake contraction for different A\. The
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lines represent the solutions with wake contraction. o = 8°.
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Figure 5.3: The comparison of the computational solutions with the exper-
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The problem with this vortex cylinder model is that in Burggraf’s[1999)
theory, the discrete helical vortices are approximated by cylindrical sheets
with uniformly distributed vorticity. However, this is not appropriate because
the induced downwash is not a constant downstream on each vortex cylinder.
In order to obtain a more accurate representation of the slipstream of the
rotor wake and the outer solution for the bound circulation on the rotor
blade, a discrete vortex-ring model is applied, as discussed below.

5.3 The Discrete Vortex-Ring Model

5.3.1 Numerical Scheme

Burggraf developed a discrete vortex-ring model to represent the discrete
helical vortices (See Appendix C for more details). The more-or-less helical
trailing vortices shed from the rotor across the rotor blade forms a screwlike
surface winding down below the rotor plane and this screwlike surface is
refered as an elemental slipstream surface. In this vortex-ring model, each
elemental slipstream surface is represented by a sequence of discrete vortex
rings. With every rotor revolution, each vortex ring convects along with the
local induced radial and vertical velocities. The circulations of the vortex
rings on the same elemental slipstream surface are constant and equal to the
spanwise variation of the bound circulation on the rotor plane from which
they are shed from. An iterative scheme is applied to obtain the slipstream of
the trailing vortices and the corresponding bound circulation simutanously.

For the numerical computation, initially, we use Burggraf’s [1999] theo-
retical solution (see Appendix B) to determine the circulations of the vortex
rings on each slipstream surface and the downstream distance between two
successive vortex rings on the same elemental slipstream. To accurately rep-
resent the rotor-wake slipstream, we use the discrete vortex-ring representa-
tion up to a distance L = 5 below the rotor tip-path plane and then extend
the rotor-wake slipstream from the final vortex ring on this elemental slip-
stream surface to infinity with a uniform distribution of azimuthal vorticity
wound around a semi-infinite cylinder as shown on Figure 5.4. The iterative
process begins with this initial condition.

Now we consider the iteration process. For each iteration, first, a set of
streamline equations are solved numerically with the initial position at the
rotor tip-path plane (ry,,0) for each elemental slipstream surface m where
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kth vortex ring
on surface m

k+lst vortex
ring on
surface m

Kth vortex
ring on
surface m

%—infinite
vortex cylinder

on surface m

Figure 5.4: The discrete vortex ring model. The dashed lines represent the
vortex rings on the m‘* elemental surface. After the last vortex ring K, the
mth elemental surface has been represented by a semi-infinite vortex cylinder
with uniformly distributed vorticity. After a revolution time 2—’7—'{9—, vortex ring
k convects with the local induced velocity to vortex ring k+1.
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Rotor tip-path plane

Figure 5.5: Vortex ring representation of the rotor wake (axial view). M
spanwise elemental slipstream surfaces.

m=1,..., M (M is the total number of elemental slipstream surfaces across
the rotor blade as shown on Figure 5.5), we have

27
new new __
Zmptl T Zmk = W (5.22)
27
new new __
Tmg+1 ~ Tmp = QU (5.23)

where z°¢ and 73’y are nondimensionlized downstream and radial positions

m,k
(by the rotor radius a) of the vortex ring k on the elemental surface m. As
mentioned above, initially, .’ = mm and 2575 = 0. w and u are induced ra-
dial and vertical velocities nondimensionlized by Qacg. A relaxation scheme

is applied also to obtain the slipstream of trailing vortices, in the form

2y = wapty + (1 - w)zf,f‘fk (5.24)
and
Tk = Wk + (1= w)rf,i‘jc (5.25)

where w is the relaxation coefficient. For each rotor revolution, the vortex
ring on surface m convects from (ricy, zmy) to (Thik 1, Zmks1). Having
obtained 27, 1, Theki1s Znmkee and 75,5 can be computed similarly. Such
computations are repeated until 277} is greater than L. Next, the bound
circulation for the rotor blade is evaluated at the center of two consecutive

slipstream surfaces in the rotor plane for each iteration. The iterative process
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was assumed to be convergent when the maximum absolute value of the
bound circulation Qﬂlﬂ;%m‘i is less than the criterion given by the user.
With this discrete vortex ring model, the slipstream of the helical rotor
wake can be evaluated with the local induced radial and vertical velocities
by all the wake vortex segments and this makes the vortex ring model more
accurate than the vortex cylinder model provided enough rings used in the

computations.

5.3.2 Results for the Discrete Vortex-Ring Model

We applied the discrete vortex ring model to study a single-bladed rotor with
aspect ratio A = 6 and geometric angle of attack o = 8°. Figure 5.6 presents
the comparison of the outer solutions for the induced downwash in the rotor
plane and Figure 5.7 shows the comparison of the corresponding bound cir-
culations where p is the cut-off parameter in the numerical calculation. Note
that the calculated bound circulations for the vortex ring model agree well
with Burggraf’s [1999)] lifting-line theory in the middle of the rotor (R from
0.35 to 0.6). However, near the tip, the results for the vortex ring model are
higher than the theoretical result and near the hub, they are lower than the
theoretical result. This might because that with the rotor wake contraction,
the induced downwash in the rotor tip-path plane becomes smaller near the
tip region but larger near the hub compared with the Burggraf’s [1999] non-
contracted lifting-line model as shown on Figure 5.6. Moreover, the results
for the vortex ring-model are affected by the cut-off parameter p. As pu is
reduced, the results approach the theoretical curve. The minimum p was
taken to be 0.16 for M = 4 and 0.28 for M = 8. For a value of y below these
values for the corresponding M, the computations do not converge.

The converged slipstream for the rotor-wake is shown on Figure 5.8. Note
that the slipstream predicted by the discrete vortex-ring model agrees fairly
well with Landgrebe’s experimental formula (5.2), while the slipstream of
Burggraf’s first-order approximation overpredicts the contraction.

5.4 Summary

In this chapter, the solution for the spanwise bound circulation for a ro-
tary wing is computed using two types of wake model: vortex cylinder and
discrete vortex ring model. In the vortex cylinder model, the contracting
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Figure 5.6: Comparison of the induced downwash in the plane of the rotor
(outer solution). The solid line represents the Burggraf’s theoretical solu-
tion, the dotted line represents the result for the vortex-cylinder model, ‘*’
represents the result for M = 4 and p = 0.16, ‘0’ represents the result for
M = 4 and p = 0.28, ‘o’ represents the result for M = 4 and p = 0.35, the
right pointing triangle represents the result for M = 8 and p = 0.28 and
the box represents the result for M = 8 and p = 0.35. M is the number of
the elemental surfaces and p is the cut-off parameter used in the numerical
calculation.
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Figure 5.7: Comparison of the bound circulation(outer solution). The solid
line represents the Burggraf’s theoretical solution, the dotted line represents
the result for the vortex-cylinder model, ‘*’ represents the result for M = 4
and p = 0.16, ‘0’ represents the result for M = 4 and p = 0.28, ‘¢’ represents
the result for M = 4 and p = 0.35, the right pointing triangle represents the
result for M = 8 and p = 0.28 and the box represents the result for M = 8
and g = 0.35. M is the number of the elemental surfaces and p is the cut-off
parameter used in the numerical calculation.
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Figure 5.8: Comparison of the slipstream. The solid line represents
Burggraf’s first-order approximation, dotted line represents the result of
Landgrebe’s [1972] formula (5.2) where A = 0.78, Ct = 0.0001 and ), = 0.04.

Here ’*’ represents the result for the vortex ring model with M = 4 and
p = 0.35.
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slipstream vortices has been represented by a discrete sequence of vortex
cylinders of finite length and different radii. The contraction coeflicient €
is given by Burggraf’s [1999] first-order approximation. The computational
results compare fairly well with the experimental data of Caradonna and
Tung {1981]. The problem with this vortex cylinder model is that according
to Burggraf’s [1999] theory, the discrete helical vortices are approximated by
cylindrical sheets with uniformly distributed azimuthal vorticity. However,
this approximation may not appropriate because the induced downwash is
not a constant downstream on each vortex cylinder. In order to obtain a
more accurate prediction of the slipstream of the rotor wake and the bound
circulation on the rotor blade, the discrete vortex-ring model is applied. The
numerical results for the bound circulation of the vortex ring model compare
well with Landgrebe’s [1972] empirical formula, whereas Burggraf’s more
approximate theory overpredicts the wake contraction when compared with
Landgrebe’s {1972] empirical formula.




Chapter 6

The Boundary Layer on the
Blade

6.1 Introduction

The three-dimensional viscous flow near the rotor tip is one of the important
and difficult problems in rotor dynamics. Most theoretical investigations
that focused upon the flow in the tip region have been confined to inviscid
analyses. The detailed study of the complex three-dimensional viscous flow
near the tip region can play an important role in determining the generated
rotor noise, rotor performances, and dynamic loading of the rotor blade.

The present work investigates the details of the viscous flow near the rotor
tip by solving for the boundary-layer flow. Interpretation of the boundary-
layer flow in that region is expected to explain many phenomena that arise
in rotor dynamics.

Fundamental treatments of the boundary layer away from the hub and
the tip and the leading and the trailing edges of the blade are found in Sears
(1948], Fogarty[1951] and Tan [1953]. In particular, Fogarty[1951] found
a similarity solution for the boundary layer flow in which the streamwise
viscous flow (i.e. in the x-direction) reduces to the classical boundary layer
flow past a wing. The spanwise velocity component is small compared with
the streamwise component, and is of the order of £ where c is the chord of the
airfoil. Tan [1953] considered the same problem as Fogarty [1951] and used
regular perturbation theory to obtain a solution. In all this early boundary
layer work which incorporates the outer flow of Sears [1950], the spanwise
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velocity is directed outward from the hub and is small compared to the local
rotational velocity Uy, = Qy. In fact it is easy to show that away from the
hub, the ratio of the spanwise to the streamwise flow is

VoS«

u oy

McCroskey and Yaggy[1968] extended the outer flow of Sears(1950) to the

case of forward flight and they were able to obtain boundary layer solutions.
In this treatment, McCroskey finds that cross flow effects due to translation
are significant, while those due to rotation are small. Dwyer and McCroskey
[1971] builds on this earlier work by adding the unsteady flow effects to the
full single blade rotor aerodynamic problem. Results show that the Coriolis
and apparent pressure gradients due to translation (i.e. potential) cross flow
are significa nt.

6.2 The inviscid flow

For solving the boundary-layer equations, the inviscid flow-velocity compo-
nents are needed as boundary conditions at the edge the boundary layer. To
obtain the chordwise velocity component U and the spanwise velocity compo-
nent V for the inviscid flow, the rotor blade is modeled by horseshoe-vortex
panels, as described in Chapter 3. The panel circulations are calculated such
that the normal velocity at collocation points are set to zero. The inviscid
velocity components are calculated assuming zero circulation at the trailing
edge (Kutta condition). The inviscid velocity components evaluated at the
blade surface provide boundary values for solving the boundary-layer equa-
tions.

6.3 The Boundary-Layer Equations

The derivation of the boundary-layer equations near the rotor tip started
by assuming the form of these equations in generalized rotating coordinates
given by Mager [1964]. After some mathematical manipulations, the bound-
ary layer equations in Cartesian coordinates have the following dimensionless

form 5 5 9
in v w
B—x+5&+a—z—0, (6.1)
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where Z is the boundary-layer coordinate normal to the surface, z is the
chordwise coordinate and y is the inner variable in the spanwise direction;
for these equations to hold, we must have the aspect ratio of the blade
A << Re'?. The origin of the coordinates coincides with the leading edge
of the rotor-tip chord. (u,v,w) are the velocity components in the (z,y, Z)
directions, respectively. p is the dimensionless pressure, which replaces the
static pressure - the dynamic pressure of the upstream flow at the rotor tip.
The dimensionless variables in equations (6.1), (6.2) and (6.3) are defined by

(63)

* * * W
rT=—,y= Q_’ Z = Z—Rel/2, t = —2¢,
a a Qc
u* ,U* w* p*
= 5y s U= = == R 1/2> = A
R P o A pQ2[2 (6:4)

where the superscript * denotes corresponding dimensional variables, I de-
notes the rotor span, c is the rotor chord and {2 is the rotating speed of the
rotor. Equations (6.1-6.3) are subject to the following boundary conditions:

u,v specified at t =0,

g—sz%:O as y — oo,
u=v=w=0 at Z=0,
u— U as Z — o0,
v—=V as Z — oo,

where U and V are the inviscid velocity components in the £ and y-directions
respectively. The normal coordinate Z is replaced by a Rayleigh variable

defined by

n= 5% (6.5)

Also, to cluster the points near the wall where the flow is expected to vary
rapidly,
2

= 1_5’
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where € is the new normal coordinate and has a range of [0,1); the governing
equations (6.1), (6.2) and (6.3) become

ou Bv

7+ (6.7)

fz € 0,
a l ] ol 2 [
%—?—+u%§—+vaa—§+(§t+urfz £ZZ)66}£ fzaa€2 =—P, (6.8)
where & = %f, = % and £77 = g—Z%, F = (u,v), P = (8p/dz,dp/dy).
The pressure gradient vector P is calculated using the inviscid surface speeds
obtained from the panel code.

The problem is started by assuming parabolic velocity distributions inside
the boundary layer for both u and v. These distributions start from zero
values at the wall and reach asymptotically the values of inviscid velocity at
the boundary layer edge ({maz). These parabolic distributions serve as initial
conditions for the numerical solution of the boundary-layer equations.

6.4 Grid Distribution and Numerical Solu-
tion

While the grids are distributed uniformly in the chordwise direction, grid
points are clustered near the rotor tip to resolve the rapid variation of inviscid
flow variables there. The distributions in the spanwise direction are obtained
from the same lifting surface program as is used in obtaining the bound
circulation. The numerical solution contains two major steps; the first one
solves the inviscid flow and the second solves the boundary-layer equations.

For solving the boundary-layer equations, the same technique of Xiao et al
[1994] is used assuming fixed grid and non-interacting boundary layer. The
boundary-layer equations are solved with the external potential flow used
to evaluate the inviscid velocity and the corresponding pressure gradients.
The Crank-Nicolson method is used to obtain the time dervatives in the
equations. Also, the spatial derivatives are evaluated using the the standard
central difference operator. Different time steps At were used in solving
the equations,and it was obsereved that the smaller the time step the faster
the convegence of the solution. The standard central differences replace the
spatial derivatives in the equation.
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6.5 Results

Initial results were obtained for the case of a Blasius boundary layer in order
to validate the code. In this case, the velocity in the chordwise direction (U)
equals unity and zero value of (V) at all the collocation points. The results
approach the Blasius boundary layer solution as time increases.

6.6 Summary

Additional results produced for the case where the inviscid flow corresponds
to the actual vortex flow over the wing have been produced. These results
indicate the presence of a strong spanwise flow along with a well defined, non-
reversed streamwise flow. More work is required to quantify the boundary
layer results further and to develop conditions under which the flow may
become reversed.
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Chapter 7

Experiments

7.1 Introduction

The long-term goal of this project is to arrive at a general understanding
of how tip vortices form. Such an understanding would enable the synthe-
sis of findings from various application areas, with sufficient generality and
accuracy to guide the design of new tip shapes and vortex control devices.
Although research on vortices is as old as hydrodynamics, a quick survey of
current work in aerodynamics indicates that several efforts are underway in
various application areas, where the primary uncertainty is about the origin
and evolution of tip vortices. In the past four years, our effort has been
directed towards:

e Collecting and correlating experimental results and data on fixed-wing
and rotary wing vortices.

e Performing experiments on rotary wing vortices to answer some key
unknowns.

e Estimate measurement errors due to particle ”spinout”.

e Developing methods of measuring the tip vortex strength and structure
efficiently.

In this Chapter we introduce prior work and discuss current findings, as
they relate to the long-term project goal. Vortex formation, evolution to the
near wake, seed particle dynamics, work on quantifying density variations in
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the vortex, and the development of a web tip vortex database are addressed.

7.1.1 Rotor Experiments

Thompson, et al.[1988] used LV to examine the formation process as well as
the vortex properties in the near-wake of a single-bladed rotor in the Georgia
Tech 9-foot hover facility in the mid-1980s. In this facility, a wake inductor
refined by trial and error enabled rotor operation over a specified range of
test conditions with the problems of vortex impingement on facility walls.
Under these conditions, rotor-synchronized laser sheet visualization showed
that the vortex followed a precisely repeating trajectory for at least the first
360 degrees and probably the first 540 degrees of vortex age. Using mineral
oil seeding which showed some ”spinout” (discussed later in this paper), they
sliced the wake radially using an argon ion laser sheet, approximately 1mm
thick, and strobed the laser beam using a chopper wheel driven on a motor
'synchronized to the rotor shaft. The rotor was operated at 600rpm. A 35 mm
camera set on long exposure captured the vortex cores clearly for at least the
first 3 turns. Aperiodicity (jitter) of even one core radius would have moved
the brightest regions of the photograph (the heavily-seeded region at the
edge of the core) across the darkest region the core center, smearing out the
photos.

With periodicity thus assured, they used sub-micron particles of incense
smoke to seed the core of the tip vortex, and measured each of the 3 compo-
nents of velocity, in turn, across the vortex using a specially designed Remote-
Aligned Off-Axis Receiver[1990]. With this arrangement, they obtained fairly
uniform seed particle arrival rates across the entire tip vortex. They found
that during formation, the vortex achieved its maximum strength at a x/c of
0.5 and 0.6 for CT values of 0.0057 and 0.0022 respectively. Thompson also
observed secondary features in the circumferential velocity profiles for early
wake ages. These were not understood at the time, beyond postulating that
these were a manifestation of the rollup of discrete vortical filaments during
the formation of the tip vortex. However, Thompson’s flow visualization and
measurements showed that the tip vortex of a rotor does persist with much
of its initial strength for large vortex ages.

Brand, et al.[1989, 1990} and Liou, et al.[1989, 1990] examined vortex tra-
jectories and dynamics of the two-bladed rotor used in the present paper, in
forward flight in the Harper Tunnel. They showed, again, that vortex trajec-
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tories repeated with precise periodicity, provided wake impingement on the
tunnel floor, and wake recirculation, were prevented by going to sufficiently
high advance ratio (> 0.06 in this experimental configuration). Again, the
vortex was seen to maintain much of its initial strength for vortex ages over
400 degrees, which was the limit of their interest because they were studying
rotor vortex/airframe interaction. This is consistent with the computational
results reported in Chapter 4.

Komerath, et al.[1991] extended the single-bladed rotor with a double-
swept blade tip in the 9-foot hover facility at Georgia Tech to study effects
at high pitch angles. During their experiments, they observed that at certain
conditions, the tip vortices impinged on the edge of the wake inductor and
recirculated in the facility: this was associated with the development of se-
vere aperiodic jitter of the vortex trajectories. Funk, et al.[1995] conducted
extensive measurements of the flow field between the 2-bladed rotor and a
wing in the John Harper wind tunnel. Although vortex trajectories were sub-
stantially altered by wing interaction, the results on periodic repeatability
of vortex locations, and persistence of vortices to large ages, both remained
unchanged.

Caradonna, et al.[1997, 1999] visualized the wake of a 2-bladed rotor in
axial climb in the 30'x30’ Settling Chamber of the 7’x 10’ wind tunnel at
Ames Research Center. Again they found that when wake recirculation was
prevented, the vortex trajectories repeated quite perfectly from cycle to cycle
of blade motion, even as the climb velocity was brought towards zero. Vortex
cores were discernible by the seed particle patterns for several turns of the
vortex, until merger between vortices smeared the patterns. The introduction
of blockage beyond a certain level downstream of the rotor, (using wooden
slats placed across the test section) triggered violent unsteadiness at the
rotor plane and all over the wake; removal of such blockage made the wake
smooth and periodic again. From the above, it is quite clear that the tip
vortex of a rotor persists over long vortex ages. Also, aperiodic ”jitter” of
vortices is avoided. The test condition McAlister [1995] and McAlister et al.
[1996] studied the velocity field in the near wake of a two-bladed rotor in
hover using a 3-component laser velocimeter. The test conditions were a CT
of 0.005 at 1100 and 550 RPM. He found that three chords downstream of
the blade the vortex meander was less than one core diameter. By the time
the vortex reached a vortex age of 180°, the meander had increased by an
order of magnitude. McAlister also noted that changing the rotational speed
did not have an effect on the core diameter, the general appearance of the
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trailing vortex or the magnitude of the velocity components relative to the
tip speed.

In the late 1990s, measurements were reported by Leishman, et al.[1995]
using a single-bladed rotor in a hover facility, with a 3-component laser ve-
locimeter. These measurements indicated rapid " diffusion” of the tip vortices
within the first 90 degrees of vortex age. Substantial aperiodicity was ob-
served. These phenomena were attributed to turbulence in the core, and the
rapid smearing of the vortex velocity profile data was described as turbulent
diffusion[1995]. The data acquisition procedures used had taken no account
of aperiodicity, however, raising the possibility that vortex profile data, av-
eraged over several cycles, had become severely smeared by cycle-to-cycle
uncertainty in vortex position. Conlisk, et al.[2000] showed by analytical
arguments based on orders of magnitude that turbulent diffusion was not a
plausible explanation for the vortex decay of the rate reported by Leishman.

Mahalingam et al.[2000, 1998, 1998] conducted measurements on the ad-
vancing blade side (ABS) of the two-bladed rotor used in this paper, in
low-speed forward flight. He showed by flow visualization and LDV mea-
surements that the rotor flow field was periodic to better than 1 deg of rotor
azimuth at an advance ratios 0.1.

7.1.2 Previous Work - Seed Particle Dynamics

Velocity measurement techniques that rely on seed particles carried by a
fluid are subject to errors due to finite particle inertia. In the case of laser
velocimetry, the experimenter faces a dilemma: over the large distances used
for laser velocimetry in rotor facilities, it is difficult to accurately capture in
back scatter mode light scattering from particles smaller than 1um. Particles
larger than one micron are believed to experience substantial centrifugal drift
with respect to the flow in the core of a tip vortex. Thompson, et al.[1988,
1990] dealt with this problem by developing an Off-Axis Scatter Receiver.
This device could be aligned remotely to stay focused on the measurement
volume as it was traversed across a large facility, and capture scattering from
sub-micron particles. This is less convenient than using a backscatter LV
system, however. It is also difficult when the rotor is near other objects that
block the line of sight.

It is therefore necessary to use larger particles, and to subsequently quan-
tify the error due to particle spinout. Dring, et al.[1979] has examined the

134



trajectories of particles in turbine cascades. He concluded that the Stokes
number (St) had the greatest influence on particle behavior. Furthermore,
he determined that particles with St < 0.1 would very closely follow the
streamlines, and that particles with St > 10 would be centrifuged across
streamlines. In another study, Dring[1982] integrated the equations of mo-
tion for particles in several flows to provide guidance on LV seed particle size
selection. The flows included a turbine cascade, a step deceleration and expo-
nential and sinusoidal accelerations. He determined that the Stokes number
required to achieve 1% accuracy depended on the type of flow. In a turbine
cascade, he found that a Stokes number of less than 0.01 was required, but
in a sinusoidal flow 0.14 was tolerable.

Dring, et al.[1978] and Kriebel{1961] examined the behavior of particles
in centrifugal particle separators. In these flows, the gas experiences solid
body rotation. This is analogous to vortex core velocity profiles, except that
the strong axial velocity is absent. Dring’s analysis assumed that the particle
and gas velocities were equal. He also used several drag models instead of
assuming that Stokes relation holds. Dring[1978] asserts: ”axial velocities
do not alter the solution so long as the particle and fluid axial velocities
are equal and constant.” Kriebel’s study did not place any assumptions on
the particle and fluid velocities. However, he used Stokes relation to esti-
mate drag acting on the particle. Comparison with experimental data is also
provided. Neither of these analyses is valid in the potential velocity region
outside the vortex core.

Leishman[1996] calculated the behavior of seed particles in a ”desingu-
larized” vortex. His study used particles ranging from 0.5 to 2.0um and a
vortex circulation of 5.6m?2s~!. Inside the vortex core, he predicted veloc-
ity errors as high as 10% and 25% for the tangential and radial velocities,
respectively, for the 2um particle. The smaller particles resulted in lower
errors. His study also examined particle count distribution. The highest
particle distributions occurred at r/Rc of 1.7 for the 0.5um particles, 2.6 for
the 1.0um particles and 3.8 for the 2.0um particles. Although intended for
rotor tip vortex applications, this work did not consider the effects of the
strong axial velocity in the core. It should be noted here that the vortex
strengths used by Leishman [1996] are almost 7.5 times those encountered in
the present rotor flow field.

The previous work on seed particle inertia has been focused on two di-
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mensional models of vortices. In the rotor tip vortex core, there is a very
substantial axial velocity(for example Caradonna et al. [1997, 1999]. The
resulting sink-like effects on the flow field should cause an inward-directed
radial fluid velocity, which should considerably inhibit the drift of particles
out of the middle of the core, where the centrifugal acceleration is much
lower than at the core edge. Considering experimental results obtained at
the present authors’ laboratory with cleanly-periodic, well-resolve vortices, it
is evident that the estimates of seed-particle inertia error cited, for example,
in Leishman[1996] convey overly conservative picture. This issue needs to be
considered, and upper bounds are sought for these types of errors.

7.1.3 Vortex Core Density Field

Intense vortices are present in many natural fluid flows. Specially, the flow
fields of fixed and rotary wings are composed of many vortical flow structures.
The most dominant and important structures are trailing tip vortices from
wings or rotor-blade tips. In some cases, the tip vortices associated with
high-speed aircraft or high-performance helicopters may be so intense that
the compressibility effect is important in the vortex cores[1953].

There has been much research studying the inner structure of vortex core,
however not many have studied the effects of axial flow, compressibility and
viscosity. There is little information and understanding on the inner structure
of vortex core including details on the pressure and density distributions.
The knowledge of this information is especially important to the further
development and validation of advance CFD model.

Many experiments have been performed to measure the structure of fixed-
wing and rotary-wing tip vortices. Several experimental methods have been
used to this purpose. Intrusive methods such as pressure probes, hot-wire
anemometry, are questionable because the existence of probes alter the vortex
structure and increase the uncertainty(Chigier and Corsiglia [1971], Tung et
al. [1983]). Non-intrusive methods such as LDV also encounters difficulty
for tip vortex structure measurements, because seed particles which are large
enough to provide good signal-to-noise ratio are also subject to inertial drift
radially from the vortex core, leaving the core void of particles beyond some
age.

Some optical density gradient methods such as laser speckle velocimetry
and shadowgraphy can also be used to examine the structure of tip vortices.
These methods are completely non-intrusive, and the use of seeding particles
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is not required. Laser speckle velocimetry uses changes in the index of re-
fraction caused by local changes in the density due to turbulent eddies. The
changes in index of refraction are integrated over the path length of the laser
and result in speckles in the beam. Flow velocity can then be determined by
tracking the motion of the speckles. Hence, the most important requirement
for this method is that the density field of the flow must contain inhomogeni-
ties and the relation between light intensity and density variation of the flow
field should be known. Therefore, this work will present a simple analytical
result for the density variation of a three-dimensional compressible viscous
vortex and the relation between density gradient and intensity of light.

7.1.4 Measurement Issues - Blade Proximity

Measuring the velocities during the formation process is fundamentally dif-
ficult due to the proximity of the measurement points to the blade surface
and the length scales involved. Measurement techniques that require phys-
ical probes, such as hotwires, cannot be employed for these measurements.
There is too much potential for physical interference between the probe and
the rotor. Since the length scales are so small, there is also the risk of the
probe influencing the flow. Because of these risks, laser velocimetry is of-
ten used. Its primary advantage is that probe interference and interaction
with anything in the flow is avoided. However, its performance also suffers
in blade tip measurements. This can be due to low signal to noise ratio.
There are two factors contributing to the low signal to noise ratio. The first
is that positive and negative velocities on the order of the rotor tip speed are
expected. Therefore, the frequency shift and the bandwidth of the bandpass
filter must be increased to capture the entire expected velocity range. Both
of these contribute to a noisy signal. Reflections off of the blade surface due
to the proximity of the measurement points to the blade also decrease the
signal to noise ratio.

Another issue that increases the complexity of these measurements is
beam blockage. At certain rotor azimuths, the rotor blade blocks one or
more of the LV beams, resulting in a lack of data in portions of the rotor
cycle. Careful positioning of the beams or other schemes must be used to
capture data at all points over the complete rotor cycle.
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7.2 Experimental Setup

These experiments were conducted in the John Harper Wind Tunnel on the
Georgia Tech campus. The Tunnel is a closed return tunnel with a 7’x9’ test
section. The tunnel is powered by a 600hp electric motor coupled to a four-
bladed fan via an eddy current clutch. This provides continuously variable
speed control up to 200fps. Turbulence intensity is approximately 0.5%. Ex-
tending through the ceiling of the test section is the shaft for the rotor. It is
tilted forward by 6 deg to simulate forward flight. A photodetector provides
a pulse once per revolution for phase averaging the data. Attached to the
end of the shaft is a two bladed untwisted, untapered, teetering NACA 0015
rotor. The characteristics of this rotor are shown in Table 7.1. For these

Airfoil NACA 0015
Radius 18”
Chord 3.375”
Collective 10°
Solidity, o 0.12
CT 0.0089
Tip Chord Re | 2.87 x 10°

Table 7.1: Rotor properties.

experiments an advance ratio, p, of 0.10 was used. Rotor RPM was 1050
corresponding to a tunnel freestream of 16.4 ft/s.

The vortex properties were measured using laser velocimetry (LV). The
tunnel LV system is a single component system consisting of a 5W argon ion
laser, conditioning and fiber optics and a probe mounted in the test section.
The laser’s output is split, frequency shifted and coupled to fiber optics in a
TSI Colorburst module. The fibers terminate in the probe, which is mounted
to a three axis linear traverse in the tunnel test section. It is computer con-
trolled and moves the measurement volume to the desired location. The
traverse is located far enough outside of the wake that it has little affect on
the flow. Focusing lenses of 350mm and 750mm were used. The correspond-
ing probe volumes using these lenses were 1.31mm x 90.54m and 5.80mm
x 190.0pm, respectively. Frequency shifts between 1Mhz and 10MHz were
used. The LV processor is a counter-type processor. Between 8 and 128
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fringes were counted using a 1% tolerance for the 5/8 crossing criteria.

Seeding for the LV measurements consisted of atomized mineral oil droplets.
These droplets have been sized in the test section to range between 1 and
5um. As previously discussed, the flow field in this experimental setup is pe-
riodic to better than 1 deg of rotor azimuth. Therefore, the three-dimensional
flow field can be reconstructed from three separate single component mea-
surements.

7.2.1 Rotor Interference

MeasurementPoint

| \ Beams Blocked by Blxde

Figure 7.1: Beam blockage by blade.
Beam blockage and noise due to reflections were addressed by measuring
each velocity component using two different probe orientations (Figure 7.1).

In the figure, the beams from the bottom are measuring the lateral velocity
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component. However, due to rotor interference, it cannot measure the points
above the rotor for the azimuth shown. Positioning the probe behind the
rotor allows measurements of the lateral velocity component to be made at
positions above the blade for the azimuth shown, but it will also contain a
void in its data set. Measurements in front of the blade are not possible
due to beam blockage. However, by stitching together the two datasets, one
complete dataset can be created. A code was written to do so. For a given
azimuth, data from grid locations containing a zero velocity and points per
bin were replaced from the same grid point from the second dataset.

Figure 7.2: Vortex origins measurement grid.

7.2.2 Measurement Grids

Vortex formation measurements were conducted on the advancing blade side
(ABS) and retreating blade side (RBS) of the rotor. On the ABS the mea-
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surement grid origin was located at the trailing edge of the tip of the blade
when ¢ = 90 deg(Figure 7.2). It should be noted that (a) the measurement
grid is only parallel to the blade at ¢ = 90 deg, and (b) for the other azimuths
where the blade intersects the measurement grid there is an angle between
the blade and the measurement grid. This becomes an issue when determin-
ing the location of the blade in the measurement grid. The measurement
grid on the RBS side was the same with the exception of when ¢ = 270°.

Figure 7.3: Near wake measurement grid on both sides of the rotor.

In forward flight, the vortex properties are a function of the rotor azimuth
at which they were shed. Measurements were made at four azimuth locations,
the minimum number of locations to capture all of the shedding possibilities.
The measurement grids for these are shown in Figure 7.3 and Figure 7.4.
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Figure 7.4: Near wake measurement grid, front and rear.
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7.3 Vortex Formation

7.3.1 Overall Velocity Field
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Figure 7.5: Blade tip flow field, approximate blade position shown, x/c =
0.8. Here = measures distance from the leading edge of the blade.

The flow field surrounding the blade is highly three-dimensional. As illus-
trated in Figure 7.5, in addition to the substantial rotation due to the vortex,
there is also a strong component of velocity directed upstream. Note that
the blade position shown is only approximate. Its position was estimated
from artifacts in the data. Perhaps the most prominent feature is the tip
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vortex. Its influence is apparent in all of the measurement locations above
and outboard of the blade. The fluid spilling around the edge of the blade
and rolling up into the tip vortex can also be seen. On the top surface, or
suction side of the blade, there is a substantial spanwise flow directed toward
the blade tip. On the pressure side of the blade, there is a bifurcation point
located around y/c = -0.2. For locations closer to the tip than y/c = -0.2,
the flow is directed outward towards the tip. On the other side, the flow is
directed towards the rotor hub. The bifurcation point may be due to the
influence of the vortex shed by the previous blade. That vortex has moved
off of the measurement grid, and therefore is not seen.

There is considerable asymmetry in the tip vortex. The vortex core, as
defined by the distribution of the circumferential velocities, is elliptical. The
circumferential velocities also show considerable asymmetry. Unlike vortices
observed at older ages, the circumferential velocities are not of the same mag-
nitude as one traces the perimeter of the vortex. Circumferential velocities
approaching 60% of tip speed are observed on the inboard and top portion
of the core. The velocities on the bottom and the outboard sides are signifi-
cantly weaker, ranging between 20 and 30% of the tip speed. The peak axial
velocity is not located in the vortex ”center”. It is instead shifted toward the
outboard edge of the vortex core. Peak axial velocities approaching 90% of
tip speed in the upstream direction are observed. Several ”blobs” containing
high axial velocity are also apparent in regions that appear to be outside of
the vortex core (y/c = -0.3).

A vortex is typically characterized by measuring both its peak circumfer-
ential and axial velocities and radius, since it is assumed to be symmetric.
However, a single number cannot be used to characterize the observed vortex
due to its asymmetry.

7.3.2 Evolution of the circumferential velocity

Due to the asymmetry of the vortex, the circumferential velocity profiles
across the horizontal and vertical axis of the vortex were examined. The
vortex location was determined by searching the horizontal lines of the mea-
surement grid for the vortex signature. This resulted in the velocity profile
along the horizontal axis of the vortex as well as vortex position. Using the
vortex position, velocity measurements along the vertical measurement line

144




passing through the vortex center were plotted to obtain the velocity profiles
along the vertical axis. Sometimes the center of the vortex did not coincide
with a vertical measurement gird line. In these cases the two measurement
lines closest to the vortex center were plotted.
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Figure 7.6: Circumferential velocity profile. Horizontal cut (left), Vertical
cut (right), x/c = 0.47.

The circumferential velocity profiles along both axes during vortex for-
mation are shown in Figure 7.6 - Figure 7.19. Velocity profiles along the
horizontal axes are shown on the left, and those along the vertical axes are
on the right of each figure. The first clear circumferential velocity profile is
apparent at a x/c of 0.47. At this position, along the horizontal axis, there is
a region of solid body rotation with a radius of 3% of the chord. Outside of
this region, the expected 1/r velocity decay is not present. Along the vertical
axis velocity profile also shows a region of solid body rotation. On the top of
the vortex, it exhibits a 1/r type decay outside of the vortex core. However,
the bottom exhibits behavior similar to that observed along the horizontal
axis (Figure 7.6). A 1/r decay is observed forming on the inboard and bot-
tom of the vortex as early as x/c = 0.55 (Figure 7.8). The outboard side of
the vortex does not exhibit this behavior until a chordwise location of 0.63
(Figure 7.10). In general, the highest circumferential velocities are found on
the top of the vortex; the inboard side is a close second. Velocities observed
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Figure 7.7: Circumferential velocity profile. Horizontal cut (left), Vertical
cut (right), x/c = 0.51.
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Figure 7.8: Circumferential velocity profile. Horizontal cut (left), Vertical
cut (right), x/c = 0.55.
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Figure 7.9: Circumferential velocity profile. Horizontal cut (left), Vertical
cut (right), x/c = 0.59.
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Figure 7.10: Circumferential velocity profile. Horizontal cut (left), Vertical
cut (right), x/c = 0.63.
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Figure 7.11: Circumferential velocity profile. Horizontal cut (left), Vertical
cut (right), x/c = 0.68.
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Figure 7.12: Circumferential velocity profile. Horizontal cut (left), Vertical
cut (right), x/c = 0.72.
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Figure 7.13: Circumferential velocity profile. Horizontal cut (left), Vertical
cut (right), x/c = 0.76.
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Figure 7.14: Circumferential velocity profile. Horizontal cut (left), Vertical
cut (right), x/c = 0.80.
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Figure 7.15: Circumferential velocity profile. Horizontal cut (left), Vertical

cut (right), x/c = 0.85.
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Figure 7.18: Circumferential velocity profile. Horizontal cut (left), Vertical

cut (right), x/c = 0.97.
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Figure 7.19: Circumferential velocity profile. Horizontal cut (left), Vertical
cut (right), x/c = 1.02.

at the bottom and outboard side are weaker than at the other locations. By
a chordwise location of 0.59 they are approximately 50% of the velocities at
the other locations. Kinks in the velocity profile are also apparent at some
chordwise locations.

7.3.3 Circulation and Core Size

Circulation and core size were determined from the presented circumferen-
tial velocity profiles. Due to the asymmetry, a single value of circulation or
core radius does not accurately represent the true nature of the vortex. Cir-
culation and core size were computed for velocity profiles along both axes.
Circulation was computed using half of the difference in the peak velocities.
Figure 7.20 and Figure 7.21 show the results from the profiles along the hor-
izontal and vertical directions respectively. Data from the horizontal axis
show the circulation increasing from 0.2m?/s at x/c = 0.47 to 0.9m?/s at
the trailing edge. Likewise, the core width increased from 3% of the chord at
x/c = 0.47 to 9% of the chord at the trailing edge. Few data points were ob-
tained from the velocity profiles along the vertical axis. This was due to the
ambiguous peak velocity near the bottom of the vortex and the uncertainty
in the peak magnitude and location for vortex centers that did not coincide
with a measurement line. However, the data from these profiles show that
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Figure 7.20: Evolution of circulation and width/2.
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the circulation starts near 0.105m?/s at an x/c = 0.47. There is a sudden
increase to nearly 0.5m?/s at x/c = 0.51. This is then followed by a decay
to 0.335m?/s at the trailing edge. The height of the vortex remains nearly

constant at 4.5% of the chord.

7.3.4 Axial Velocity

Most of the chordwise planes measured show regions within the core having
axial velocities approaching that of the blade tip. Velocities up to 0.96 of
the tip speed were measured. At this point however, since the exact location
of the blade is not known, there is some ambiguity regarding the region of
large axial velocities. It cannot be determined if these regions are fluid or the
blade itself. In the blade tip velocity field shown in Figure 5E, the region of
the flow close to tip speed is nearly 0.09 non-dimensional units tall. However,
the non-dimensional blade thickness at that chordwise location is 0.04. This
indicates that at least some of that region is fluid moving at tip speed. At
the other chordwise locations it is not as clear. As the planes move toward
the leading edge, the size of the high velocity region approach the thickness
of the blade. In those planes no conclusions can be drawn.

The magnitude of the axial velocities also suggest that they are of the fluid
and not the blade. If the LV were measuring the surface velocity it should
measure 1.0. To verify this, velocity measurements of the blade velocity
will be made by repeating the measurements without seeding. This will also
provide another method, in addition to the code to be discussed, to determine
the exact location of the blade in the measurement grid.

7.3.5 Vortex Location During Formation

The asymmetry of the vortex again presents problems when locating its cen-
ter. Two methods were used to do so. The first searched for a vortex signa-
ture in the circumferential velocity profiles. The center was assumed to be
located half way between the peaks. The second method located the region
of peak axial velocity. The horizontal location during formation is shown in
Figure 7.22 and the vertical location is shown in Figure 7.23. Both of these
plots are relative to the measurement grid origin. At this point, nothing can
be said about the vortex center relative to the blade since the exact blade
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Figure 7.22: Horizontal vortex location.
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position is not yet known.

Comparison of the two methods shows good correlation considering the
asymmetry of the vortex. In the lateral direction both methods place the
center oscillating about a y/c location of -0.06. There is however an excur-
sion seen in both methods at x/c of 0.79 to -0.30. The maximum difference
between the two methods is 0.06, or two measurement points. An impor-
tant feature to notice is that one method does not consistently under or over
predict the other method. If this were the case, it would suggest that there
was a registration problem in the data. However, since neither seems to con-
sistently over or under predict the other, a registration problem is unlikely.
Therefore, the asymmetry observed in the position of the peak axial velocity
is likely a physical feature of the flow.

In the vertical direction, both methods produce identical results. A down-
ward movement relative the measurement origin is observed.

7.3.6 Observations on the Vortex Formation Process

The resolution of the LV system becomes an issue for these measurements.
At the trailing edge, there are nine measurement points across the core.
However, the length scales of the vortex near the midchord position are ap-
proaching the resolution of the LDV system. At the chord location where the
first clear velocity profile appears, there are only three measurement points
in the core. Presumably the vortex formation process starts closer to the
leading edge, but with the current LDV system, it cannot be captured.

The asymmetry of the vortex causes differences in the vortex strength
depending on which velocity profiles are used. If the results are averaged,
however, it can be used as an indication of the overall changes in vortex
strength. In general, an increase in vortex strength is observed. Coupled with
the secondary features, or kinks, in the velocity profiles, this suggests that
the formation process may be due to a rollup of individual vortex filaments.

7.3.7 Blade Tip Location

Knowledge of the blade position as it passes through the measurement grid
is critical if the vortex position relative to the blade is to be captured and
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[ Location | Flapping Angle |

Rear 2.13°
ABS —1.41°
Front -2.13°
RBS 1.41°

Table 7.2: Measured flapping angles, 4 = 0.10, 1050RPM

phenomenon near the blade surface are to be observed. The location of the
blade in the measurement grid is a function of the blade flapping angles,
azimuth and airfoil section. Liou[1988] measured the tip path plane (TPP)
of this rotor at an advance ratio of 0.10 and at 2100 RPM. However, since
these tests were conducted at 1050 RPM, it was felt that the measurements
should be repeated to verify the TPP.

The TPP was measured by lowering a horizontal laser beam until it
touched the tip of the rotor. The test section lights where turned off so
that the intersection of the laser and the blade tip could easily be deter-
mined. This test was conducted on the ABS and the rear of the rotor. The
measured flapping angles match those measured by Liou and are shown in
Table 7.2. A code is being written to numerically solve for the position of
the blade in the measurement grid. The results will be used to filter out
locations that correspond to, blade interference.

7.4 Evolution to the Near Wake

7.4.1 Evolution of Core Axial Velocity

The variation in the axial velocity on the ABS, RBS and rear of the rotor
are shown in Figure 7.24. On the ABS, the peak core axial velocity increases
linearly from 25% of tip-speed to 50% of tip-speed from a vortex age of 0
degrees to about 24 degrees, after which it drops slowly back to 256% of tip-
speed by an age of 120 degrees and levels off. On the RBS, velocities reaching
nearly 80% of tip speed are observed immediately following formation. This
suggests that core axial velocity reaches tip speed during formation due to
the no-slip condition on the blade. The peak sharply drops within 6 degrees
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Figure 7.24: Evolution of the peak axial velocity.
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of azimuth, and is replaced by a wave like pattern of evolution as seen on the
ABS. The mean of this wave like pattern levels off at 25% of tip-speed. At
the rear of the rotor, the peak axial velocity is much smaller, starting out at
20% of tip-speed and leveling off at about 8% of tip-speed by the time the
vortex is 72 degrees old.

There are distinct differences in the evolution of the core axial velocity
distribution on the ABS and the RBS. These differences might be in part due
to the differences in seed particle dynamics. On the ABS the seed particles
have to reverse direction to follow the core flow, thus taking more time to
adjust to the local velocity when compared to the RBS. On the RBS, seed
particles traveling along with the freestream flow are more easily entrained
in the blade-tip boundary layer.

There appears to be a lot of scatter in the data. On closer inspection,
there is a periodic pattern to the core axial velocity evolution. The period of
this pattern is about 10 degrees of rotor azimuth, or a time of 1.62ms. The
Strouhal Number based on this period, tip-speed and blade tip thickness is
0.16, which suggests a shedding pattern very similar to the shedding in the
wake behind a cylinder.

Measurements were made to extend the data on the evolution of the axial
velocity out to vortex age of 540°. By a vortex age of 160° the number of data
points inside the vortex core had diminished to the point that no conclusion
could be made on the peak axial velocity.

7.4.2 Evolution of Circumferential Velocity

Figure 7.25 shows the evolution of the peak core circumferential velocity on
the four azimuths of the rotor. The velocities on the front and RBS of the
rotor are about 10% higher than the velocities at the ABS at all vortex ages.
On the RBS and front of the rotor disk, within the first 6 degrees of vortex
age the peak velocities reach 45% of tip-speed on the RBS and 35% of the
tip-speed on the ABS. After that, the peak velocities drop slowly, reaching
30% of tip-speed by an age of 72 degrees on the RBS and 20% of tip-speed by
an age 160 degrees. On the rear the velocities stay level at 20% of tip-speed.
There is decay in the maximum core circumferential velocities. Several re-
searchers have decay in the core velocities and have proposed that it is due
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Figure 7.25: Evolution of the peak circumferential velocity.
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to the diffusion of the vortex core. Lamb[1932], derived an expression for
the core circumferential velocity as a function of circulation, core radius and
downstream distance from the trailing edge of the generating blade, given as:

~VY4ip 2

Vo(r,z) = 5= |1 — e oz ]

2nr

Non-dimensionalized with V;;,, using thickness of the rotor blade for core
diameter, and replacing the distance z with the vortex age, 1, the expression
can be rewritten as:

—0.0675
%ﬁ% = kl [1 - CT]

Note that Lamb derived this equation making assumptions of small axial
gradients, small core velocities compared to free-stream velocities, and a
rectilinear vortex. None of these assumptions are valid for vortices shed from
a rotor blade. '

Under these considerations, the value of k; was obtained as 0.39 from
Figure 25E. Using a value of v equal to the kinematic viscosity of 1.5¢°
gives the flat line in Figure 25E, indicating that viscous diffusion cannot be
the cause of the decay of the vortices.

A value of eddy viscosity was obtained for this flow using Prandtl’s mix-
ing length model:

du

N
'Ut—l dy

For the vortex core in these tests, the mixing length is taken as the blade
thickness, and the velocity gradient is obtained from measurements, giving
v, = 0.164. Using this value in Lamb’s model results in a drop of peak core
velocity to 1% of tip-speed within 12 degrees of vortex age. Thus, the levels
of turbulence in the flow-field are much lower than those associated with the
scales of the tip-vortex.

Measurements of peak circumferential velocity were made out to a vortex
age of 488° on the ABS (Figure 7.26). These measurements show that the
peak circumferential velocity remains reasonably constant for nearly one and
a half turns of the rotor.
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7.4.3 Vortex Size
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Figure 7.27: Evolution of the vortex core radius.

On the RBS and the front of the rotor, the core radius varies between 6% and
7% of the chord (Figure 7.27). At rear of the rotor, the radius increases from
4% of the chord to 6% by an age of 72°, and then decreases back to 4% at
an age of 108°. On the ABS, there is an increase from 5.5% to 6.5% between
24° and 36° of vortex age followed by decay to 4.5% at an age of 96°(Figure
7.28). For vortex ages between 189° and 4887, the radius oscillates between
4 and 7% of the chord.

Recall from the vortex formation measurements that the core radius at
the trailing edge was 9% of the chord. The reason for this discrepancy is
not yet known; further analysis of the data is still needed. One possible
explanation is that the vortex may not be completely rolled up. It may take
several chord lengths for the vortex to completely form.
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7.4.4 Wake Boundaries
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Figure 7.29: Wake boundaries on the ABS and RBS.

The wake boundaries are shown in Figure 7.29 and Figure 7.30. On the ABS
and RBS, the boundaries are dominated by contraction. In the far wake on
the ABS, the boundary exhibits a slight change of slope at z/R of -0.30. The
boundaries at the front and rear of the rotor are dominated by convection.

7.4.5 Tip Vortex Turbulence

There are several factors that affect the measurement of the RMS velocities.
At very early vortex ages, when the vortex is not completely rolled up, very
high values of RMS fluctuations are observed, sometimes reaching 50% of the
mean. This is in large part due to the lack of seed particles within the core.
The core velocities are thus averaged over a very few number of particles,
resulting in a large RMS velocity. With the exception of the rear station,
the fluctuations reduce to a value typically around 10% of the mean velocity,
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after about 30 degrees of vortex age. The azimuth resolution used for acquir-
ing the data and the large velocity gradient in the core also contributed to
the measured RMS velocity. All the tests here used an azimuth resolution of
1 degree. The time taken by the tip-vortex to cross the measurement volume
is about 6 degrees (0.95 ms). In this time, the velocity variation is about
50% of tip-speed, or 20 m/s. This corresponds to a velocity variation of 4.17
m/s per degree. Therefore when the data is acquired with an azimuth reso-
lution of 1 degree, it already has RMS fluctuations on the order of 10% of the
tip-speed. If these fluctuations are taken out of the RMS values, it is clear
that fluctuation levels within the vortex core are lesser than the freestream
turbulence levels (Figure 7.31). This indicates that there is no turbulence
generated in the tip-vortex core. Furthermore, absence of turbulence gener-
ation within the core is demonstrated by the fact that at all locations on the
rotor disk, except the rear, the RMS fluctuations drop with increasing vortex
age. This phenomenon could only results from a decay of turbulence if any
is present. On the rear of the rotor, the generating blade is in the turbulent
wake of the rotor hub and shaft. Some of this turbulence might be wrapped
into the core, resulting in large RMS fluctuations.

7.5 Seed Particle Dynamics

7.5.1 Formulation of the Seed Particle Dynamics Prob-
lem

Radial force due to the fluid rotation, and aerodynamic drag are assumed
to be the only forces acting on the particle. Particles are assumed spherical.
Aerodynamic drag acting on the particle is obtained from Stokes relation-
ship. The particle at time t is shown in Figure ?7.

The angle ¢ is the rotation of the fluid and § is the angle of particle lag
behind the gas rotation. The vectors u and v are the X and Y components,
respectively, of the gas velocity V' at the particle’s position. The particle’s
velocity is represented by ¢ and §. Summing the forces in the X and Y
directions and assuming Stokes drag results in:

Y Fx = mi = Fx,,,, = 6rpurV,,
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Figure 7.32: Particle at time {.
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Y Fy = mjj = Fy,,, =67prVs,

where V. is the velocity relative to the particle. From the diagram it can
easily be shown that the relative velocity of the particle is given by:

Vi

—y— = —VY 4
x=u—t=-Vi-zg

and

The gas velocity was modeled assuming solid body rotation in the vortex
core and then switched to a potential model outside of the vortex core. The
resulting equations of motion are:

i+ B+ pBYy=04+By+p%z=0

where
18u
B
ppd3
V = w,r for 0<r<R.
Ly
V= - for r> R,

The subscripts , and , represent the characteristics of the particle and con-
ditions at t = 0, respectively.

These equations were numerically integrated using Matlab software. Par-
ticles with diameters of 1.0, 2.0, 3.0, 4.0 and 5.0 microns were examined.
All particles were "released” at r/R, = 0.01 with an angular velocity equal
to that of the gas. The numerical integration was stopped when r/Rc =
3.0. Initial angular velocity, w,, vortex circulation, I'y, and core radius were
determined from experimental data. These correspond to 3333 rad/s, 0.754
m?/s and 0.006 m respectively. The Stokes numbers for these particles based
on the initial angular velocity are listed in Table 7.3.
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Particle Diameter | Stokes Number=

wo D2
(um) Pt

0.0088
0.0351
0.0789
0.1402
0.2191

Y x| W DD =t

Table 7.3: Particle’s Stokes numbers

7.5.2 Predicted Difference Between Seed Particle and
Fluid Velocity

Results of simulating the dynamics of seed particles of mineral oil in a 2-D
vortex are shown in the following figures. The radial and tangential velocity
components are shown in Figure 7.33. The non-dimensional air velocity is
also superimposed on the chart. The error in tangential velocity is seen on
the upper part of the figure as differences from 1.0. The error in radial ve-
locity is shown at the bottom of the figure as differences from 0.

True tangential velocity in the vortex core is under-represented by parti-
cles measuring 3um and larger. The velocity error ranges from approximately
2% — 8%. Particles smaller than 2um showed better than 99% accuracy in
representing the tangential velocity. Outside the vortex core, where velocities
and centrifugal forces acting on the particles are lower, all particles rapidly
adjust to the new conditions and then travel at the same speed as the fluid.
The larger particles do, however, have a slight lag before they adjust to the
proper velocity. All of the particles in the core obtain a radial velocity due to
the centrifugal forces acting on them. This results in errors ranging between
approximately 1% and 18% of the fluid velocity. The error decays in the
potential region of the vortex. The decay, however, is not as strong as that
of the tangential velocity.

7.5.3 Error in Radial Growth of Vortex Core

The increase of the particle’s radial position is shown in Figure 7.34. As
illustrated in the figure, particles experience the greatest increase in radial
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Particle Dia. | Time (ms) | Time (ms) | Time (ms)
(pm) r/R,=0.1|r/R.=05|r/R,=1.0
1 78 133 159
2 20 T34 40
3 9 15 18
4 ) 9 11
5 4 6 8

Table 7.4: Time to reach various radial locations

position while in the vortex core. Outside of the core, the rate of radial
position growth decreases. The circles indicate each revolution of a particle.
Table 7.4 shows the amount of time required for particles to reach several
radial locations. As expected, large particles are rapidly centrifuged from the
vortex core.

7.5.4 Velocity Error

These simulations show that the tangential velocity of seed particles en-
trained in the vortex core closely represents the true tangential velocity of
the gas. The maximum error is approximately 8% lower than the true veloc-
ity for 5um particles. There is also a substantial radial component of velocity
due to the centrifugal force acting on the particles. Again, the largest errors
are due to the 4 and 5um particles.

One issue to consider is the amount of time required to centrifuge the
largest particles out of the core. In 11 ms, or a vortex age of 69.3°, nearly all
of the 4 and 5um particles have been ejected from the core. At that point,
the maximum tangential error is about 2% and the radial velocity error is

_approximately 8%.

7.5.5 Particle Number Density

Another issue that affects LV measurements is particle density in the core.
Since particles are required to obtain measurements, low seeding densities in
the core will result in low data rates. The presented results show that parti-
cles are rapidly evacuated from the core. By 159ms, or a vortex age of 1002°,
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the vortex core is nearly completely void of particles. At first glance, this
would seem to indicate that one could make vortex core measurements up to
vortex ages of about 1000°. However, since the peak axial velocity occurs in
the center of the vortex, the maximum age that allows for measurements of
the maximum axial velocity is significantly less. Additionally, note that the
axial velocity is directed towards the blade, and thus fluid with the parti-
cles evacuated, moves towards segments of the vortex with lower vortex ages.
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Figure 7.35: Comparison of measured core size with 2-D predictions for var-
ious sizes of particles.

The predictions of particle dynamics are compared with the actual experi-
mental data obtained (Figure 7.35). As mentioned before, the core tangential
velocity could be measured up to 540 degrees of vortex age. From these, the
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core size could be obtained. Going back to the calculation of particle dynam-
ics for particles of various sizes starting from near the core center, we are able
to predict the vortex age at which these particles would have gone beyond
the real vortex core edge. Thus, for ages beyond this, the measured core size
should keep increasing. Comparing with the actual data for core size, we
see that the size stays essentially constant beyond 450 degrees of vortex age.
The predicted conical increase of core size due to particle spinout does not
occur. This indicates that either the particles used are less than 2 microns
in diameter, or the predictions of error are extremely conservative.

Given the above comparison, the upper bound of error in tangential ve-
locity due to particle spinout must be revised downwards, to the values cor-
responding to particles of 1 to 2 microns, for the above simulation approach.
Thus the upper bound from Figure 7.33 is seen to be on the order of 1 to 2
percent, an insignificant source of error in these measurements.

As mentioned before, the actual vortex has a strong axial velocity compo-
nent that should be taken into account in future simulations of seed particle
spinout. Two competing effects may be expected: Firstly, the presence of
axial flow towards the blade tip would cause spinout to occur at smaller ages
than predicted by the 2-D model. However, the axial flow would also cause
a sink-like radial fluid velocity. This would reduce the radial drift of par-
ticles from the core, and keep them at locations inside the core where the
acceleration is lower. This would reduce the drift error.

7.5.6 Accuracy of the Simulation

The Stokes relationship used for particle drag was developed under the as-
sumption that the Reynolds number, based on the particle relative velocity
and diameter, is less than 1. The Reynolds number of the particles as they are
centrifuged from the core is shown in Figure 7.36. According to Dring[1978],
for Re, 1, Stokes relationship tends to under predict drag.

Figure 7.37 compares CD predicted by Stokes relationship and the drag
models used by Dring[1978]. Stokes relationship under-predicts drag by 50%
for the largest particles near the edge of the core. This under-prediction of
the drag means that the trajectories and velocity errors are conservative es-
timates.
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Figure 7.36: Reynolds numbers of the particles.
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As the tip speed increases, the vortex strength increases rapidly, so that
smaller particles would be needed to keep the level of error low. However,
the Reynolds number of the relative flow might also increase, making the
Stokes flow simulation less accurate. As mentioned previously, and as shown
by comparison with the core size measurements, the axial velocity in the
core should also be considered to perform a useful simulation of seed particle
dynamics in rotor tip vortices.

7.6 Density Variations in the Vortex Core

7.6.1 Analytical Model

We start by considering the governing equations, in cylindrical coordinates
(r,0, z), for the structure of a slender, axisymmetric, compressible, viscous
vortex. With the quasi-cylindrical approximation, only radial derivatives of
the viscous term are retained. Due to assumption of slenderness, the radial
velocity is much smaller than the other velocity components, thus in the
radial momentum equation, the pressure gradient balances the centrifugal
force. The equations reduce to (Orangi et al. [2001])

Bgr} + p:/’ + 85:" =0 (7.1)

2% g (7.2)

B B0 L] 4,8 () o
I I = (- (VZ A ) @)1(7@;;( o)+

(y—1M> (3V,\*  (y—LM2[ @ Vp 0Vp 8 Vp
Re Hr or + Re Br(r)c’)‘r V"a(r)75)
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This system of equations is closed by the equation of state for a calorically
perfect gas. .
T 7.6
Due to the axial symmetry assumption, the boundary and initial conditions
are

p:

V,=0

Vo=0
ov,
arﬂo
or

o =

and the conditions at the outer vortex edge are for r — oo

0 (7.7)

VG - VGoo(z)
V. = Vioo(2)

P —* Poo(2)
T = Teo(2) (7.8)

The solutions to these equations require the initial condition on Vp,V,, T’
and p as functions of r at some axial location. It is very difficult to obtain
the analytical solution of such a complex system of equations. Orangi, et
al. [2001] recommends using similarity equations to simplify the problem.
However, it is still very hard to solve the similarity equations analytically.
Numerical methods are preferred for this purpose (see Orangi[2001] for more
detail of numerical procedure).

Again, the aim of this work is still to find simpler analytical solutions
for this problem. Hence, to simply or make the analytical solutions possible,
some assumptions and modifications are needed in this system of equations.
Our method is applying the known solution for the velocity profile of an
incompressible viscous vortex to the momentum equation of a compressible
vortex to obtain a solution for the density field in the vortex.

Consider the r-momentum equation for compressible vortex, Eq. (7.2).
To determine the pressure distribution, the circumferential velocity profile
is needed. Furthermore, by assuming isentropic flow, the pressure p can be
expressed in terms of density, p, as
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(2)-(2)

Therefore, to obtain the density distribution in the vortex, it is necessary
to know the velocity profile V. The simplest model of a viscous vortex is
the Lamb vortex. Lamb[1932] developed an expression for the circumferen-
tial velocity of a trailing vortex core as a function of circulation I's,, radial
distance r and time ¢. It can be shown as

Vo(r) = -21:7:'—; [1 - exp(—r2/4vt)] (7.10)

and, the Lamb result for viscous core growth is
re = 2V aut (7.11)
where 7. is the core radius and o = 1.25643

The steady three-dimensional problem is customarily replaced by a con-
ceptually and numerically simpler unsteady two-dimensional problem where
t = 2/Vy for trailing vortex from a fixed wing(Saffman [1992]) or for tip
vortex from a rotor blade(Wong et al. [2000]). Thus, Eq.(7.11) shows that
the vortex core radius is a function of downstream distance given by

For the trailing vortex of fixed wing,

z
=2 —_— .
re =2,/av o (7.12)
e = 2,/avu z (7.13)
¢ I/tip '

With Eq.(7.10) and (7.11), in terms of non-dimensional radial distance, 7 =
7/T, a simpler expression for three-dimensional viscous vortvex and can be

written as r ,
Vi 00 (1 — exp(—af )) (7.14)

For tip vortex of rotor blade,

T

2nr,




It should be noted that Lamb’s expression assumed small axial gradient,
small core velocities compared to freestream and a rectilinear vortex. More-
over, for rotor-blade tip vortex, z also depends on the vortex age.[2000]

Vatistas, et al.[1991] gave a series of general ”desingularized” velocity pro-
files, where the circumferential velocity in a two-dimensional cross-sectional
plane of the vortex is expressed as

I'o r o T

- Vol(7F) =
Ve(r) =5, (r2n 4 r2n)l/n 7 o(7) 277 (1 + r2n)i/n

(7.15)

and n is an integer variable.

Consider the velocity profile for Lamb’s vortex and three special vortex
models of Eq.(7.15) with a particular value of n; Rankine vortex n = oo,
Scully[1975] vortex n = 1 and n = 2 model.

From Eq.(7.15),n — oo , Rankine vortex:

Tof 0<7<1
Va(r) = { ¥l oao1 (7.16)
27rrc% r Z 1
For n =1 Scully vortex:
} | R 7
Vo(T) = o (15 79) (7.17)
For n = 2 profile:
Vo) = o T (7.18)
N o I+ :

All these vortex models satisfy the boundary conditions

0
‘/omar 1—‘ =

=
Il

N\ 0
Vo(F) > 0as 7 — o0
The normalized circumferential velocity profiles of these four vortex mod-
els are shown in Figure 7.38. From Figure 7.38 we clearly see that, in
each model, the maximum circumferential velocity occurs at 7 = r/r, = 1.

Note that the Lamb vortex and Vatistas’s n = 2 vortex profile show very
good agreement. This agreement is also seen in Bhagwat and Leishman’s
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Figure 7.38: Vortex velocity profiles.
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results[1998]. Moreover, it has also been shown by Vatistas, et al.[1991] that
the best fit of the simpler model to the experimental circumferential velocity
component is obtained if n = 2. Thus, to avoid complexity of mathematical
solution, we now consider the n = 2 model as a simpler model of the Lamb
vortex.

7.6.2 Vortex Density Distribution

From Eq.(4.2), we can rewrite it in terms of 7 as following
o _pV5
or T

By differentiating Eq.(7.9) with respect to 7, we obtain

=0 (7.19)

P _ Yoo -10p

= = 2
oF  pk or (7.20)
Substituting Eq.(??) into Eq.(??) for 22 results in
VZ  YPoo 4-20p
4 = L2t 21
7 P g or (7.21)
Then integrating both sides of Eq.(7.21) with respect to 7 gives
Vi VPeo
i = — 1 -1 )
/ = R e (7.22)

where c is a constant of integration determined by the boundary condition
p(T) = poo as 7 — co. Substituting the three vortex velocity profiles, given
in Eq.(7.16)-(7.18), and finding the first and second derivatives of density,
we finally obtain in non-dimensional form

1. n — oo, Rankine vortex:

__p [1+(y = 1A —9)"T 0<F<1

_r 7.23
St STER R
op | (v -1a-2)+ 17 0<r<1 o

186




2— -
5%p IA[L+ (v — DA — 27 [1+ S ZEPE] 0<7<
o = 22y
072 % [1 _ (7;21»] bR [2(2;27” (1 _ j;_z_l/\) B 3] F>1
(7.25)
2. n = 1, Scully vortex:
__ P v 1 rl—l
- 1= A 7.2
P Poo [ 1+ 72 (7.26)
p 2\ —1 15
Ll [1— i _,\] ’ (7.27)
or  (1+72)2 1+72

o2 (1+7*2)21
[1 472 +2(2—7)Af2 (1 li_lx)_l] (7.28)

T14 T (147)2 U 1472

25 2X —1 151
= -

3. n = 2 profile:

5= ;’f: _ [(7 — 1A (tan”l(fz) - %) + 1] (7.29)
% — 2\ [1 :Tﬂ] [(7 — 1)\ (tan-l(f2) _ g) + 1]2_1 (7.30)

. 47 2(2 — y) A2
1+ (L+7)3

[1 +(y—1)A (tan"l(fz) - g)] ~1] (7.31)

where A = I'2 po,/8m2ypeor? is a non-dimensional term. Therefore, the den-
sity variation and its first and second derivatives depend on the circulation of
vortex,['w, which depends on the freestream velocity (fixed wing) or rotor-tip
velocity (rotary wing).

Computed density profiles are plotted in Figure 7.39 for each of the three
vortex profiles in our interested cases. Also, by changing A, the effect of
circulation to the density variation is shown in Figure 7.40.
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Figure 7.39: Density distribution for Rankine(n = o0), Scully(n = 1) and
n = 2 vortex models, A = 0.14.
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7.6.3 Relation Between Vortex Density and Light In-
tensity

We are interested in measuring the intensity of light or laser, which is directly
effected by the refractive effects of incident light. The refractive effects are
produced by local density variations in the flow field. Thus, knowing re-
lationship between the fluid density p(or p) and the refractive index, 7, is
needed. This relationship is expressed by, using the Gladstone-Dale relation

n—1
. K (7.32)
with sufficient accuracy where & is the Gladstone-Dale constant which varies
with both the fluid property and the wavelength of the transmitted light.
The value of this constant for air is 2.282107*m?/kg (Reddy [1999]).
Eq.(7.32) shows that the refractive index of the fluid is proportional to
its density. Thus, if there are regions of density variation in the flow field,
such as in a vortex, the incident light normal to the plane will be refracted,
producing diverging or converging light rays onto a recording screen or re-
ceiving plane. The angular deflection of these light rays depends on the first
derivative of density with respect to distance. These deflected light rays will
produce regions of decreased or increased illumination or intensity. A simple
ray diagram of this process is shown in Figure 7.41.

By assuming symmetric flow in the radial direction, the light intensity
distribution due to density variation in the flow field can be written in cylin-
drical coordinates as

AT Ik 2 (18p 0%
T = "o h (r 3 + 8r2) dz (7.33)
where [; to [, is the light path length through the density variation and 7, is
the refractive index at reference conditions. By rewriting Eq.(7.33) in non-
dimensional form, we obtain for the light intensity of compressible vortex

Al lkpeo 2 (18p 0%p
= = 24+ —L\d .34
I NoT2 Jiy (f or + a2 ) ¢ (7.34)
Integrating along the light path results in
AT KPoo 10p &%
— ==l -4L) | 5=+ = .
1 772 i ('F ar o7 (7:35)
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Figure 7.42: Computed light intensity for Rankine(n = o0), Scully(n = 1)
and n = 2 vortex models, A = (.14.

By substituting for density variation and its gradient for each of three
vortex profiles in to Eq.(7.35), we obtain results of light intensity associated
with each vortex models shown in Figure 7.42. In addition, by changing ),
the effect of circulation to the light intensity is shown in Figure 7.43.

7.6.4 Observations

Figure 7.39 shows that the fluid density within the vortex is significantly
lower than the ambient density. Different vortex model yields considerably
different value of vortex density profile. However, every vortex models gives
the minimum density at the same position, the center of vortex, but differ-
ent values. The Rankine vortex model has a lowest minimum density value.

192




1.0
0.8
0.6
0.4
0.2
0.0

-0.2

0.4

0.6

0.8

-1.0

1.2

-1.4

1.6

| 18
20 : { : | S '1 L | . I : 1 . I )

S0, ))xp
T “T I T [ T I T

o=

2
¢

; ;| ——— A=0.4
- — — = 1=030
------- A=0.50
e - A=1.00

Normalized light intensity, Aln,r

IIIITIIIIIIIIII‘TIT‘

o
&
NS
'
o
N
N
w
H

Figure 7.43: The effect of A on the light intensity profile for n = 2 vortex
model.
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Since the density within a vortex is less than the ambient density, the in-
cident light rays passing through the vortex are deflected outward radially.
In Figure 7.40, increasing the value of A(or the circulation) yields the fluid
density decreasing. Due to the force balance between pressure gradient and
centrifugal force, the more A increases, the more density is reduced.

From Figure 7.42, there are both areas of negative and positive intensity
within vortex in each case. The negative intensity values are recognized as
regions of deficient light relative to ambient, where as the positive intensity
value are regions of brighter illumination. We see in Figure 7.42 that the
negative intensity values are inside the core and the brighter intensity are
the outside. Thus, the shadow or speckle of a vortex projected on the receiv-
ing screen consists of a dark central circular spot surrounded by a brighter
periphery or halo.

As shown in Figure 7.43, within the core, the light intensity reduces and
the value of A goes up whereas the intensity outside the core increases as
A goes down. However, at A = 1, the n = 2 vortex model yields a unique
intensity distribution with a slightly more illumination (but it is still less
than the ambient) around the vortex center. Thus, the peak or minimum
illumination does not necessarily occur at the vortex center. Moreover, as A
increases, the regions of dark spot get slightly bigger than the vortex core
radius. This increasing of dark regions should not be interpreted as the
growth of the size of vortex core. Hence, theoretically, either the dimension
of dark circular spot or the inner diameter of the bright halo is not necessarily
equal to the dimension of vortex core.

7.7 Web-based Tip Vortex Database

A database for the rotary, fixed and oscillating-wing vortices has been setup
on the Internet in order to integrate observations from various tests over
decades. This knowledge base serves not only the purpose of a look-up table
for vortex-data, but can be used to compare results from different configura-
tions. This web site can be accessed at

www.ae.gatech.edu/research/windtunnel/vortorgn/vortorgn.html
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exist.

195




0.15
0.12
| .
= . ‘ .
- ¢
o 0.09 J
- | @
) ! T °
4 i [ ¢
0.06 *
- ® [}
- 9
i P4
0.03 >
, [ L 1 I3 I i 1 ] 1 1 1 (] 1 L
’I ! 5 10 15 20
AR

Figure 7.45: Range of aspect ratio and thrust coefficients over which data
exist.
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The database contains tabulated data for fixed, oscillating and rotary
wings. As can be seen from the web site, there are a large number of tests
on tip-vortices over a wide range of test-parameters. This is shown in Fig-
ure 7.44 - Figure 7.46 for four parameters, aspect ratio, Reynolds number,
downstream distance from the trailing edge and thrust coefficient. Aspect
ratios tested vary between 5 for model rotors to 20 for full-scale rotors. Tests
have been conducted over an order of magnitude variation in Reynolds num-
ber. Data exists for downstream locations of the tip-vortex from fractions of
chord lengths to hundreds of chord lengths behind the trailing edge. Thrust
coefficients vary over an order of magnitude.

7.7.1 Correlation of Circulation Measurements from
Several Rotary Wing Experiments

In spite of all these studies, there has been no success in developing gen-
eral theoretical models for determining the tip-vortex characteristics from
the basic loading parameters on the generating wing. An expression was
developed to estimate the circulation contained in the tip-vortex in terms of
the Reynolds number, aspect ratio and the geometric angle of attack of the
generating wing. Circulation data from several researchers is then compared
to this theoretical model.

There are several factors that effect the circulation of the tip vortex trailed
from a wing or a rotor blade. Four primary factors that can be identified
as having first order effects on core properties are the aspect ratio, Reynolds
number, downstream distance and thrust coefficient. There are factors over
which there might be lesser control, such as facility unsteadiness and mea-
surement techniques.

In the following paragraphs, a derivation is presented for the strength of
the tip-vortex in terms of tip Reynolds Number, aspect ratio and the ge-
ometric angle of attack of the rotor blade. Then the results of circulation
measurements from several researchers are correlated with the estimated val-
ues obtained from the test conditions. The deviations of the experimental
values from the estimated values stem from parameters not included in the
derivation. These include deviations due to measurement techniques and fa-
cility unsteadiness as well as core decay.
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Let T, be the strength of the tip-vortex after roll-up is complete and let
['nee be the maximum bound circulation on the rotor blade. Then, as a

general case,

Av = k:Ar;zam
Let the spanwise location on the rotor blade where the maximum bound
circulation occurs be R*. Then at r = R*, Kutta-Joukowsky theorem gives,

1
AU Amas = 57U G}

where ¢* is the chord length, V* is the incoming velocity, C; is the lift coef-
ficient of the blade section at r = R*. This results in an expression for the
trailed vorticity in the vortex,

A, = g(U*c*)(a*é*)

where, a* is the section lift curve slope, o* is the section angle of attack.
Letting Re* v = V*c¢*, and absorbing a*k = ki,

r, = (5“2-1) (Re*v) (g — ;)"

where q, is the geometric and o; is the induced angle of attack. Now, if we
make an assumption that the induced angle of attack is primarily due to the
tip vortex and is of the form,

Vi

*_
o =

U*
and we assume most of the induced velocity is caused by the tip-vortex and
use the span b as a characteristic length,




we can write,

=5 Cirres)
o = — | -——o
' ky \ARRe*v
Substituting this into the expression for the tip vortex strength, we get,

r = (%) e (o0 5 i)

Simplifying this for the tip-vortex strength, and absorbing all the constants
into two constants, K and K, we get,

1

[, = (K)(Re*v)(a*)H—_KL
AR

]

This expression indicates that the tip vortex circulation should be pro-
portional to Re*v, the geometric angle of attack and AR. The utility of this
result is that the tip-vortex strength is related directly to the geometric angle
of attack at an arbitrary rotor blade section. Re* and section angle of attack
can be easily replaced by an arbitrary factor multiplied by corresponding
values at the tip and the factors can absorbed into the constants. Thus the
tip-vortex circulation is easily expressed in terms of Re, AR and geometric
angle of attack.

This relation was used to estimate the circulation for several tests on
rotary wings. Figure 7.47 shows the plot for the estimated circulation versus
the measured values. The experimentally measured circulation values match
closely with the estimated circulation. Significantly, it was found that data
belonging to a particular test clumped together on one side of the theoretical
line and did not scatter all over. The data available fits the above expression
very well for values of K = 1.24 and K; = 1. Using this value of K, we obtain
a value for k as, k = 2aK . This results in a value of £ = 0.395. This implies
that the circulation in the tip-vortex is only about 40% of the maximum
bound circulation on the rotor-blade.

Thus, it is clear that for most rotor configurations, in hover as well as
forward flight, the circulation contained in the tip-vortex core is about 40%
of the maximum bound circulation on the rotor-blade. This value appears to
be very small compared to standard models where the tip-vortex circulation
is assumed to be equal to the maximum bound circulation. The reasons for
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this can be attributed to the approximations in the calculation of the bound
circulation distribution. The flow field the rotor blade operates in is highly
unsteady, with a time varying freestream as well as inflow. Added to this is
the complexity of the three-dimensional velocity field that exists over most
of the rotor blade. The use of the Kutta-Joukowsky theorem coupled with
blade element theory is an over simplification of the flow occurring in a rotor
blade. Thus, a rigorous analysis including unsteady and three-dimensional
effects is necessary for the calculation of the blade bound circulation using
inflow.

7.8 Summary

The experiments have shown that the vortex increases in strength and size
during the formation process. This, coupled with secondary features observed
in the velocity profiles, suggests that the formation process may be due to
the rollup of discrete vortex filaments. This is precisely what is seen in the
computations.
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Chapter 8

Summary and Future Work

8.1 Summary

The helicopter rotor wake is among the most complex flow fields in aerody-
namics, perhaps because the wake is fully three dimensional and unsteady.
The rotor wake is composed of the tip-vortex and inboard sheets. The strong
tip-vortex is by far the most dominant feature of the rotor wake and thus
the main consideration in this work.

Owing to the rotation of the blade, the lift and the circulation are concen-
trated in the tip region. Morever, the zero-pressure difference between upper
and lower blade surfaces at the rotor tip requires that the bound circulation
drop to zero at the tip. Therefore, the rate of the spanwise variation of the
bound circulation is very high at the tip, causing the strong trailing vortices
there to quickly roll up into a single tip-vortex. This strong tip-vortex has
a great effect on the rotor performance. When a rotor blade encounters the
tip vortex shed by the preceding blade, Blade-Vortex Interaction (BVI) will
occur and BVI is the principal source of vibrations and noise.

This work has focused on the formation and downstream development
of the tip-vortex for both fixed and rotary wings. The classical inviscid
lifting-line and lifting-surface methods are applied locally near the wing tip
to describe the origin of the tip vortex.

After a brief introduction to the panel method in Chapter 2, the case of
the fixed wing was dicussed in Chapter 3. First, we defined the asymptotic
expansion of the solution for the bound circulation near the wingtip. It
was shown in particular that to leading-order, in the tip region, the flow
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over a fixed wing is equivalent to the flow over a semi-infinite wing and the
bound circulation has an analytical solution obtained from that given by
Stewartson [1960]. Next, a similar analysis was performed for the lifting-
surface model of the semi-infinite wing based on the Schlichting-Thomas
[1947] vortex-panel method model is formulated. The numerical results for
the bound circulation were compared with the experimental data of McAlister
and Takahashi [1991] and the comparison is fairly good. Results were also
presented for the roll-up structure of the tip-vortex. It was shown that the
tip-vortex develops downstream of the wing and its circulation approaches
the peak bound circulation value asymptotically. The computed induced-
vertical velocity was compared with the experimental data of McAlister and
Takahashi [1991] and the comparison is encouraging. No turbulence model is
necessary despite the fact that for the Reynolds numbers of the experiment,
the flow would be expected to be turbulent.

The major difference between the fixed and rotary-wing wake is the wake
geometry. For a fixed wing, the wake convects downstream and away from
the generating wing. However, the shed vortices from a rotary wing stay in
the vicinity of the rotor blades for a few revolutions and significantly affect
the distribution of the bound circulation on the rotor blade. Thus, the shed-
vorticity field near a rotary wing-tip is considerably different from that for a
fixed wing. This difference was discussed in Chapter 4.

In Chapter 4, it was shown that to leading-order, the flow near the tip
of a large aspect ratio rotary wing is equivalent to the flow past a semi-
infinite wing. The leading-order inner solution for the bound circulation is
similar to that for the fixed wing, except that there is a parameter involved
that is dependent on the geometric angle of attack, the aspect ratio and
the number of blades. The lifting-surface model was used to represent the
tip region of the rotary wing and the roll-up process of the trailing vortices
was treated. The formation and downstream development of the rotor tip-
vortex was described. It was found that the tip-vortex does not roll up
completely at the trailing edge of the rotor blade as assumed in many wake
models; instead, the circulation develops downstream and approaches the
peak bound-circulation value asymptotically. It was also found that the fixed
wing tip-vortex develops more quickly than the rotor tip-vortex and this is
due to the steeper gradient of the bound circulation for the rotary wing.

It is observed that the rotor wake is not a perfect helix. The rotor wake
is fully contracted within about one rotor radius below the rotor tip-path
plane. In Chapter 5, two wake models were applied to consider the effects of
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the rotor-wake contraction on the bound circulation. First, a crude vortex-
cylinder model was applied to represent the rotor-wake contraction and the
resulting bound circulations compared surprisingly well with Caradonna and
Tung [1981]. Then a discrete vortex-ring model was used to represent the
rotor wake and its results for the wake slipstream compare well with Land-
grebe’s [1972] formula.

Preliminary boundary layer calculations were made and these calculations
are described in Chapter 6.

Laser velocimetry measurements were conducted on the wake of a two
bladed teetering rotor in forward flight to gain an understanding of both
the vortex formation process and how the vortex properties evolve into the
near wake. These experiments are described in Chapter 7. Circumferential
velocity profiles of the vortex during the formation process were first observed
at a chordwise location of 0.47. In the early stages, outside of the vortex core,
the typical 1/r decay is not present. Due to asymmetry, velocity profiles along
the horizontal and vertical directions were examined. Peak circumferential
velocity and core size were determined from these profiles. These values
were averaged to gain a general idea of the vortex behavior. The vortex
increases in strength and size during the formation process. This, coupled
with secondary features observed in the velocity profiles, suggests that the
formation process may be due to the rollup of discrete vortex filaments.

The axial velocity in several regions in the vortex core approached 96%
of the tip speed. In some planes, especially those near the trailing edge, the
region of high axial velocity is much larger than the blade thickness. This
clearly shows that it is the fluid velocity being measured. As the planes get
closer to the leading edge, the region of high axial velocity approaches the
size as the blade thickness. In these planes it not clear what is the fluid
and what is the blade since the exact location of the blade is not known.
Planned experiments and a numerical code will be used to determine the
exact location of the blade.

Measurements of the near wake show a distinct periodic pattern in the
evolution of the peak core axial velocities. The Strouhal Number based on
this period, tip speed and blade tip thickness is 0.16. This suggests that it
is caused by a shedding phenomenon. Comparison with a turbulent Lamb
vortex shows that the expected decay of the circumferential velocity is sig-
nificantly faster than the measured decay rate. Furthermore, measurements
in the core axial velocity also show no evidence of turbulent within the core.

The dynamics of LV seed particles entrained in a 2D vortex were simulated
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numerically to determine an upper bound on errors associated with particle
"spinout”. For a vortex representative of that found in these experiments,
errors in the circumferential velocity up to 8% for the largest particle size
were estimated. The rotation of the fluid also imparted a radial velocity up to
20% of the circumferential velocity. Comparison with the measured core size
shows that the seed particle spinout predictions are extremely conservative.
Based on the comparison with measured vortex size, it is seen that the actual
magnitude of error in the core tangential velocity due to seed particle spinout
is negligible.

Stokes drag predictions used for the simulations under estimated the drag
acting on the particles near the edge of the core; the velocity error and particle
trajectories are therefore conservative estimates. Predictions of seed particle
dynamics for rotor tip vortices should also incorporate the substantial effects
of core axial velocity, and proper models for particle drag appropriate for the
actual Reynolds number range.

Flow diagnostic techniques utilizing changes in the index of refraction of
the fluid such as shadowgraphy and scintillameters might be used to effi-
ciently determine vortex strength and observe structures within the vortex.
A relationship between the flow properties and the intensity of light passing
through must be known, however. A simple analytical model to establish
the relationship between density gradient and intensity was developed for a
three-dimensional compressible viscous vortex. This model could enable the
use of these techniques for efficient measurement of the vortex properties and
structure.

Rotary wing circulation measurements from several researchers were cor-
related. An expression for the core circulation was obtained in terms of
AR, Re and geometric angle of attack. The experimental core circulation
values match the prediction well. A significant fact is that data taken in
a particular test always clump together and are not scattered around the
theoretical value. Furthermore, the expression implies that the circulation in
the tip-vortex is only about 40% of the maximum bound circulation on the
rotor-blade. The reason for the discrepancy between the calculations and the
experiments is unknown.

The primary results and major accomplishments of this work are

e A lifting surface code for a semi-infinite three-dimensional fixed and
rotary wing has been developed for use as the inner solution at the
wing tip and the formation of the vortex has been described by rollover
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of vortex filaments near the wing tip.

An analytical lifting-line analysis for the semi-infinite fixed wing has
been compared with the full lifting surface code and the results are

very good.

The analytical lifting surface code results for the development of the
tip vortex shed by both fixed and rotary wings have been compared
with experiment and the results are encouraging.

The calculations show that the circulation of the tip-vortex is about
80 — 90% of the maximum bound circulation in hover and the tip-
vortex is formed within one revolution. The experiments suggest that
the circulation is ~ 40% of the maximum bound circulation in low-
s[peed forward flight. The reason for the large discrepancy is unknown.

Experimental data obtained in the last few decades by researchers all
over the world has been correlated.

An internet database has been setup where results from several fixed-,
rotary- and oscillating- wing tests have been tabulated.

Circulation measurements from this database have been correlated with
an expression developed for trailed circulation in the vortex in terms
of geometric angle of attack and aspect ratio.

Laser velocimetry has been performed near the blade tip on the ad-
vancing side of a 2-bladed rotor in forward flight in the Harper Wind
Tunnel. Vortex trajectories over the blade tip, as well as velocity fields
in the vortex formation region have been obtained from these measure-
ments.

The experiments have shown that the vortex increases in strength and
size during the formation process. This, coupled with secondary fea-
tures observed in the velocity profiles, suggests that the formation pro-
cess may be due to the rollup of discrete vortex filaments. This is
precisely what is seen in the computations.

Laser velocimetry was also used to obtain velocity data in the very
near wake of the rotor blade in a fixed wing configuration. These are

207




intended to serve as direct comparisons to the rotary wing data under
the same free-stream turbulence levels.

e Axial velocity values within the vortex can reach 96% of the tip speed.

8.2 Future Work

The following are some suggestions for future work that can be built on the
present work.

1. A further step on this work would be to include more realistic wing
geometry. In the current work, only the rectangular, zero thickness
wing is considered. However, as shown in Srinivasan et al [1993], the
wing planform has a significant effect on the distribution of the bound
circulation. Correspondingly, the downstream development of the core
radius and the circulation of the tip-vortex will be changed. To deal
with different wing configurations, the distribution of the horseshoe
panels needs to be adjusted.

2. Another addition to the this work would be to consider the effect of
viscosity on the formation of the tip-vortex. A boundary-layer solution
in the tip region might be introduced into the current potential-flow
model. The current potential-flow solution on the wing surface in the
tip region can be taken as the outer-flow condition of the boundary layer
and the set of the three-dimensional boundary-layer equations solved
numerically. By taking account of the viscous effect, the core radius,
the axial flow in the viscous core and the position of the flow separation
on the wing surface can be obtained. In addition, it is believed that
viscosity is a factor in determining the axial velocity in the core of the
vortex.

3. The numerical calculations can easily be extended to forward-flight and
this is currently being done.
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Appendix B

Lifting-line Theory for a
Multi-bladed Rotor in Hover
for the Untwisted Rectangular
Blade

Burggraf[1999] applied the concepts of Prandtl’s lifting-line theory to for-
mulate and solve the corresponding integro-differential equation for a heli-
copter rotor operating in the hover condition. In Prandtl’s theory, the high
aspect-ratio wing is represented by a line vortex (the bound vortex) and the
aerodynamic properties of each spanwise section are approximated locally by
the two-dimensional characteristics from linearized airfoil theory. However,
the free stream of the local section is replaced by the relative wind, i.e., the
effective angle of attack is the geometric angle of attack reduced by the local
downwash induced by the trailing vortices.

For the case of the rotor blade in hover, two modifications must be made:

(1) the “free stream” of Prandtl’s theory is replaced by the an-
gular velocity of rotation of the blade, and
(2) the trailing vortices follow a more-or-less helical path.

Consistent with the variation of bound circulation across the span, vor-
tices are shed all across the rotor, forming an approximately cylindrical slip-
stream filled with concentric helical vortices. To simplify the analysis, we
approximate these discrete helical vortices by uniform cylindrical sheets of
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vorticity, corresponding to an assumption of a lightly-loaded rotor. For pur-
poses of computing the downwash, these elemental vortex cylinders may be
viewed as composed of vortex rings, whose strength is approximately con-
stant on each cylinder. The axial component of the helical vortices may be
ignored, since it does not contribute to the downwash.

B.1 Derivation of the Integral Equation

A cylindrical coordinate system (r,6, z) is convenient, where r is the radial
coordinate, # the azimuthal coordinate, z the axial coordinate, and a repre-
sents the radius of the rotor (see figure 4.1).

We have shown previously that a semi-infinite cylinder of radius r' com-
posed of vortex rings of constant circulation per unit length -y, induces the
vertical velocity

v,/2 for r<o!
v,(r) =4 v,/4 for r=r1' (B.1)

0 for r>7r
Now these elemental vortex-ring cylinders, formed from the inboard vor-
tex sheet, are superposed with the vortex cylinder generated by the tip vortex
to form the complete rotor slipstream. Since the downwash at radius r in
the rotor plane is induced only by those cylinders of larger radius, the net

downwash is given by

1 fa , 1
v.(r) =5 [ %) &+ S, (B:2)

where the subscripts ¢ and ¢ refer to the inboard vortex sheet and to the tip
vortex, respectively.

The circulation per unit length -, is estimated by smearing out each
successive loop of the vortex helix over the distance it advances in one turn
of the rotor. The time for one revolution is 27/, where € is the angular
velocity of the rotor. The distance the vortex at radius r is swept downward
in one rotor revolution is then 27v,/Q2. Let I' be the value of the bound
circulation along the rotor. Then the strength of the shed circulation per unit
length along the rotor is —dI'/dr, and hence the vorticity of the cylindrical
sheet at radius r for n blades is

n) dl

Yo(r) = “Smo(r) dr (B.3)
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The tip-vortex is translated downward only by its own self-induced down-
wash, since the interior vortex cylinders do not induce downwash at the tip.
The downwash induced by a vortex cylinder at its own radius is only half
that induced at interior points, so that from Eq.(B.1) the downwash at the
tip is just 7,,/4. Hence one loop of the tip vortex winds a distance downward

A, =2mv,(a)/Q = 7v,,/2Q

and so the strength of the tip vortex cylinder for n blades, corresponding to
the circulation I'; at the tip for each blade, is just

Yo, = nl'y/A, = 2n T/,

Solving for v,, gives the result

[2n
’}/ot = 7:[1,:9 (B4)

The bound circulation I is related to the downwash velocity v, through
the airfoil section properties. From two-dimensional linearized airfoil theory,
the lift coefficient is given by

Cl = M0,

where m has the value 27 for a flat-plate airfoil, and has slightly different
values for airfoils with thickness (for airfoils with camber, a bias shift must
be included). We use the flat-plate value, and then find for the circulaton

I'=7u_ca,

where u_ is replaced by Qr for the rotor in hover, and a. is the effective

angle of attack
Uy

Qr
Here «, is the geometric angle of attack of the airfoil section. Combining
these results gives

Qe = Qg —

() = 7Qclayr — %vz(r)] (B.5)

For simplicity, we now assume both chord ¢ and geometric angle of attack
o, constant across the blade radius. Then from Eq.(B.3), the vorticity of the
inboard vortex cylinders is given by

Wlr) =~ o0 = 55 (B.)
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Substituting this expression for v, into Eq.(B.2) yields the integro-differential
equation for the induced downwash:

(B.7)

n§22 1 dvz . dr! nl§2
= [l - 5=+

v, (1) 27
Here T'; is given in terms of v, at the tip by Eq.(B.5).

The simplicity of the solution may be more easily recognized by use of
the following non-dimensional variables. Let

R =

r _ul) % e
a’ W(R)_Qaao’ /\—n c (B.8)

Then with ['; evaluated as I'(a) from Eq.(B.5), Eq.(B.7) takes the simpler
form

1o dWER), AR
ax Jr dR 'W(R)

W(R) = - S-w@] (B9)

It is clear from Eq.(B.9) that the solution for the downwash function W
depends on the radius function R and only the one aspect-ratio parameter
A

B.2 Solution of the Integral Equation

The integro-differential equation may be converted to an ordinary differential
equation simply by differentiating term-by-term, as

aw 1 - dW]
dR  4\W(R) dR

Collecting terms in dW/dR, the nonlinear equation is reconfigured into stan-
dard form: dW
1+ 4)\W(R)] =1 (B.10)

In this revised form the solution is found easﬂy, by integrating term-by-term:

W(R) = % [i\/l +8AMR+K) —1
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This form of W(R) satisfies the integral equation (B.9) if and only if the
constant of integration K is zero. Choosing the sign of the radical to re-
quire positive downwash (positive lift), the solution of the integral equation

becomes! .
W(R) = 53 [VI+8AR - 1] (B.11)

The corresponding circulation distribution for an individual blade is obtained

from Eq.(B.5):
r

Qaay,

= nc[R - W(R)] (B.12)

If the negative sign is chosen, the downwash is negative everywhere in 0 < R < 1.
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Appendix C

The Velocity Induced by a
Rotor Wake Modelled as a
Discrete Distribution of Vortex

Rings

In this appendix, Burggraf’s discrete vortex ring model is illustrated.

C.1 The Elementary Vortex Ring

The rotor slipstream is formed from the aggregate of more-or-less helical trail-
ing vortices shed by the rotor. The continuous distribution of these “helical”
trailing vortices across the rotor forms a screwlike surface winding down be-
low the rotor. It is possible to fit a rotationally symmetrical surface, to the
space curve traced out on this screw surface by a single trailing vortex. We
shall refer to this individual rotationally symmetric surface as an elemental
slipstream surface, and denote it by S, which is shown on Figure 5.4.

We take a cylindrical-polar coordinate system with 2z the distance mea-
sured along the axis of the cylinder, r the radius, and # the azimuthal angle.
The origin is located in the plane of the rotor.

The circulation of the vortex [' may be resolved into axial and azimuthal
components. The axial vorticity induces an azimuthal flow, and the az-
imuthal vorticity induce radial and axial flow. Since the downwash is small
compared with the rotational speed of the rotor (except near the hub), we
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shall neglect the axial component, treating each loop of the trailing vortex
as a discrete ring vortex.

Now we calculate the induced downwash of the rotor wake modelled by
such a distribution of vortex rings. We first consider the velocity at a point
P(r, z), in cylindrical coordinates, induced by an elementary vortex ring of
radius a,,x. The axis of the ring is the axis of rotation of the rotor. The ring
under consideration is located a distance z,,; below the rotor disk, which lies
in the plane z = 0. The axial velocity induced by this elementary ring vortex
of circulation I',; is given in terms of elliptic integrals in the form*

Pm 2 = Zmk
277 J(r + Qi) + (2 = Zme)? + 142

20T
- [1 " (T - amk)‘2 + (Z - ka)2 -+ ug:lE(kmk) } (Cl)
I, ]
Wmk\T, 2 = = km
k( ) 27 \/('f"{‘amk)? + (z_ ka)2+p,2 {K( Ic)

’ [(7‘ - amiC)L;n:(C(L:k—_zZV F2 1]E(kmk) } (C.2)

Ui (T, 2)

{ K (k)

where p is the vortex cut-off parameter and k, the modulus of the elliptic
integrals, is given by

2 4amr
N A e e T

(C.3)

The complete slipstream surface S,, is accounted for by summing the
induced velocity for all the vortex loops, £ = 1 to K, from the rotor disk to
downstream infinity. It should be noted that the circulation I, is the same
for each of the vortex rings on Sy,, but the radius a,,; of the vortex rings on
S varies with distance below the rotor plane; i.e., a,, varies with k for fixed
m. The complete rotor slipstream is then modelled from hub to rotor tip as
a discrete set of such elemental slipstream surfaces, m = 0 to M. In addition
the final contracted slipstream for large z will be represented by a continuous
distribution of vortex rings along a semi-infinite cylindrical surface.

*See Kiichemann, D., and Weber, J., Aerodynamics of Propulsion, McGraw-Hill Book
Co., 1953. The derivation has been modified to include the effect of the artificial cut-off
parametgr L.
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C.2 The Strength and Location of the Trail-
ing Vortices

The trailing vortices arise because of variation of the bound circulation of the
rotor blade. The simplest model would be to represent the bound circulation
by a piecewise constant distribution of vortices I),, m = 1 to M, with each
constant element of bound circulation continued into the wake with a pair of
trailing vortices; i.e., a set of “horseshoe vortices.” Thus the vortex rings on
the innermost elemental slipstream surface Sy have the circulation

r,=-T, (C.4)
while for the outermost surface Sy,
r!=r, (C.5)
and for the intermediate surfaces S,,, m = 1 to M — 1, the values are
[ =In—Tnn (C.6)

If we represent each loop of the trailing vortex by its own vortex ring,
then the rings are not uniformly spaced, owing to the variation of the in-
duced downwash velocity with distance below the rotor disk. Let wy,x be the
downwash velocity at the kth vortex ring on the mth elemental slipstream
surface S,,. For each complete rotation of an n-bladed rotor, there are n
new vortex loops generated. In that time points on a vortex loop will be
translated downward a distance 27w/, where Q is the angular velocity of
the rotor. Hence for closely-spaced rings in steady flow the distance between
successive vortex rings is

27
Zmk+1 T Zmk — mwm (C-7)

Again for steady flow the elemental slipstream surfaces correspond to the
streamlines of the flow. Thus

dr _u
dz w
For closely spaced rings we have
2m
Tmk+1 — Tmk = "n_Q“um (08)

equation (C.7) and (C.8) are solved using Runge-Kutta method.
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C.3 The Asymptotic Slipstream

An accurate representation of the rotor slipstream, as described above, would
require a very large number of vortex rings. We may estimate the truncation
error for M rings on a single elemental slipstream by approximating the
discrete rings by a continuous distribution of azimuthal vorticity along a
circular cylinder. The corresponding induced velocity is given below. Thus if
Weo 15 the downwash induced at the rotor by a semi-infinite vortex cylinder,
a cylinder of large but finite length L and radius a will induce downwash at
the rotor in the amount A

a2

WR Wl — ==+ )

Thus for one percent accuracy, the vortex rings must extend to at least seven
radii below the rotor disk.

To improve accuracy, we shall include vortex rings to a distance L below
the rotor disk, but then extend the slipstream from that point to infinity by
a continuous distribution of azimuthal vorticity wound around a semi-infinite
cylinder. The linear density of vorticity along the cylinder is denoted as 7y,
which is equivalent to I},;/Az.

A semi-infinite cylindrical distribution of u-vortices of the ring type in-
duce the axial and radial velocity components are given by Burggraf [1999]

X 2 4 =2 5 \2 4,2
_ __Om 5 o w L o At (- zm) Z N g
U (T, 2) onr (r+am)® + (2 — Zm)? + [(r+&m)2+(z—§m)2+,u2K(km) E(km)
(C.9)
i =2 2 _ 2
_ Y ay, —r’—p
W(r,z) = —< |1+
4 ! V2 + a2, + p2)? - 4&3;2]
N _2_ Z2—Zn
TS+ 8n)? + (2 — Zm)? + p?
- a’?n — 7‘2 — /_/,2 _ —
x [K(km)+ (r+am)2+uzn(“3"’km)]} (C.10)

Here a,, represents the final radius of the mth elemental slipstream sur-
face, and Z,, is the distance below the rotor disk at which the vortex cylinder
begins, say at a distance

1
Zm = Zmk + EAz
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where z,,x is the z-location of the last vortex ring and Az represents the
final spacing of the ring vortices, Az = (Zmg — Zm.k—1)- The elliptic-integral
parameters of Egs. (C.9) and (C.10) are defined as

- 4a,7
k2 = - C.11
& (r+am)? + (2 — Zm)? + 42 (G11)
4a,7
-2 m
= 12
Im T ¥ am)? + 2 (G.12)
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